Bipolar membranes (BPMs) with a layer-by-layer (LbL) assembled montmorillonite (K30 MMT) clay-polyelectrolyte (PE) composite junction coated onto a sulfonated poly(ether ether ketone (SPEEK)) electrospun support are prepared, characterized and their water dissociation performance is analyzed. In particular, the focus is on the effect of the presence of the K30 MMT clay as a catalyst for water dissociation, the bilayer number (three, six, and nine), and the PE strength (poly(ethylenimine) (PEI) as a weak PE and poly(diallyl dimethylammonium chloride) (PDADMAC) as a strong PE) on the BPM performance. The BPMs are prepared by electrospinning and hot pressing SPEEK and the Fumion FAA-3 polymer.
View Article and Find Full Text PDFExtensive nitrogen emissions with negative impact on nature and the environment urge effective valorization of manure and fractionation of nutrients to enable precision fertilization. Typically, manure is fed to a digester to produce biogas. The remaining digestate is then mechanically separated into a solid phosphorous-rich fraction and a liquid fraction containing both NH and K.
View Article and Find Full Text PDFBiomaterials often contain large quantities of water (50-98%), and with the current transition to a more biobased economy, drying these materials will become increasingly important. Contrary to the standard, thermodynamically inefficient chemical and thermal drying methods, dewatering by membrane separation will provide a sustainable and efficient alternative. However, biomaterials can easily foul membrane surfaces, which is detrimental to the performance of current membrane separations.
View Article and Find Full Text PDFMotivated by the need for efficient purification methods for the recovery of valuable resources, we developed a wire-electrospun membrane adsorber without the need for post-modification. The relationship between the fiber structure, functional-group density, and performance of electrospun sulfonated poly(ether ether ketone) (sPEEK) membrane adsorbers was explored. The sulfonate groups enable selective binding of lysozyme at neutral pH through electrostatic interactions.
View Article and Find Full Text PDFLayer-by-layer (LbL) assembly of the alternating adsorption of oppositely charged polyions is an extensively studied method to produce nanofiltration membranes. In this work, the concept of chaotropicity of the polycation and its counterion is introduced in the LbL field. In general, the more chaotropic a polyion, the lower its effective charge, charge availability, and hydrophilicity.
View Article and Find Full Text PDFThe effect of layer spacing and halogenation on the gas separation performances of free-standing smectic LC polymer membranes is being investigated by molecular engineering. LC membranes with various layer spacings and halogenated LCs were fabricated while having a planar aligned smectic morphology. Single permeation and sorption data show a correlation between gas diffusion and layer spacing, which results in increasing gas permeabilities with increasing layer spacing while the ideal gas selectivity of He over CO or He over N decreases.
View Article and Find Full Text PDFForward osmosis (FO), using the osmotic pressure difference over a membrane to remove water, can treat highly foul streams and can reach high concentration factors. In this work, electrospun TFC membranes with a very porous open support (porosity: 82.3%; mean flow pore size: 2.
View Article and Find Full Text PDFTo prevent greenhouse emissions into the atmosphere, separations like CO/CH and CO/N from natural gas, biogas, and flue gasses are crucial. Polymer membranes gained a key role in gas separations over the past decades, but these polymers are often not organized at a molecular level, which results in a trade-off between permeability and selectivity. In this work, the effect of molecular order and orientation in liquid crystals (LCs) polymer membranes for gas permeation is demonstrated.
View Article and Find Full Text PDFForward osmosis (FO) is an emerging process to dewater whey streams energy efficiently. The driving force for the process is the concentration gradient between the feed (FS) and the concentrated draw (DS) solution. Here we investigate not only the effect of the DS concentration on the performance, but also that of the FS is varied to maintain equal driving force at different absolute concentrations.
View Article and Find Full Text PDFWith the use of bipolar membranes (BPMs) in an expanding range of applications, there is an urgent need to understand and improve the catalytic performance of BPMs for water dissociation, as well as to increase their physical and chemical stability. In this regard, electrospinning BPMs with 2D and 3D junction structures have been suggested as a promising route to produce high-performance BPMs. In this work, we investigate the effect of entangling anion and cation exchange nanofibers at the junction of bipolar membranes on the water dissociation rate.
View Article and Find Full Text PDFFouling is a pressing issue for harvesting salinity gradient energy with reverse electrodialysis (RED). In this work, antifouling membranes were fabricated by surface modification of a commercial anion exchange membrane with zwitterionic layers. Either zwitterionic monomers or zwitterionic brushes were applied on the surface.
View Article and Find Full Text PDFBottom-up methods for the fabrication of nanoporous polymer membranes have numerous advantages. However, it remains challenging to fabricate nanoporous membranes that are mechanically robust and have aligned pores, that is, with a low tortuosity. Here, a mechanically robust thin-film composite membrane was fabricated consisting of a two-dimensional (2D) porous smectic liquid crystalline polymer network inside an anisotropic, microporous polymer scaffold.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) as additives in mixed matrix membranes (MMMs) for gas separation have gained significant attention over the past decades. Many design parameters have been investigated for MOF based MMMs, but the spatial distribution of the MOF throughout MMMs lacks investigation. Therefore, magnetically aligned and enriched pathways of zeolitic imidazolate framework 8 (ZIF-8) in Matrimid MMMs were synthesized and investigated by means of their N and CO permeability.
View Article and Find Full Text PDFApplication of forward osmosis (FO) is limited due to membrane fouling and, most importantly, high reverse salt fluxes that deteriorate the concentrated product. Polydopamine (PDA) is a widely used, easily applicable, hydrophilic, adhesive antifouling coating. Among the coating parameters, surprisingly, the effect of PDA coating temperature on the membrane properties has not been well studied.
View Article and Find Full Text PDFA variety of biomedical applications requires tailored membranes; fabrication through a mix-and-match approach is simple and desired. Polymers based on supramolecular bis-urea (BU) moieties are capable of modular integration through directed non-covalent stacking. Here, it is proposed that non-cell adhesive properties can be introduced in polycaprolactone-BU-based membranes by the addition of poly(ethylene glycol) (PEG)-BU during immersion precipitation membrane fabrication, while unmodified PEG is not retained in the membrane.
View Article and Find Full Text PDFIn this work, the decisive role of rigidity, orientation, and order in the smectic liquid crystalline network on the anisotropic proton and adsorbent properties is reported. The rigidity in the hydrogen-bonded polymer network has been altered by changing the cross-link density, the order by using different mesophases (smectic, nematic, and isotropic phases), whereas the orientation of the mesogens was controlled by alignment layers. Adding more cross-linkers improved the integrity of the polymer films.
View Article and Find Full Text PDFIn end stage renal disease (ESRD) waste solutes accumulate in body fluid. Removal of protein bound solutes using conventional renal replacement therapies is currently very poor while their accumulation is associated with adverse outcomes in ESRD. Here we investigate the application of a hollow fiber mixed matrix membrane (MMM) for removal of these toxins.
View Article and Find Full Text PDFHemodialysis is a commonly used blood purification technique in patients requiring kidney replacement therapy. Sorbents could increase uremic retention solute removal efficiency but, because of poor biocompatibility, their use is often limited to the treatment of patients with acute poisoning. This paper proposes a novel membrane concept for combining diffusion and adsorption of uremic retention solutes in one step: the so-called mixed-matrix membrane (MMM).
View Article and Find Full Text PDFIn recent years there has been a considerable interest in developing membrane chromatography systems that function as a short, wide chromatographic column in which the adsorptive packing consists of one or more microporous membranes. This study reports the use of new adsorber membranes prepared by the incorporation of various types of ion exchange resins into an EVAL porous membrane for protein recovery. The obtained heterogeneous matrixes composed of solid particles surrounded by the polymeric film possess a good accessibility for the protein to the adsorptive sites.
View Article and Find Full Text PDFThe separation of two similarly sized proteins, bovine serum albumin (BSA) and bovine hemoglobin (Hb) was carried out using a new type of ion-exchange mixed-matrix adsorber membranes. The adsorber membranes were prepared by incorporation of various types of Lewatit ion-exchange resins into an ethylene-vinyl alcohol copolymer porous structure. The obtained heterogeneous matrices, composed of solid particles surrounded by the polymeric film, display high static and dynamic protein adsorption capacities.
View Article and Find Full Text PDF