Publications by authors named "Zamzami N"

Accurate and flexible 3D pose estimation for virtual entities is a strenuous task in computer vision applications. Conventional methods struggle to capture realistic movements; thus, creative solutions that can handle the complexities of genuine avatar interactions in dynamic virtual environments are imperative. In order to tackle the problem of precise 3D pose estimation, this work introduces TRI-POSE-Net, a model intended for scenarios with limited supervision.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is defined by the deficits of social relating, language, object use and understanding, intelligence and learning, and verbal and nonverbal communication. Most of the individuals with ASD have genetic conditions; however, early identification and intervention reduce the use of health services and other diagnostic procedures. The varied nature of ASD is widely acknowledged, with each affected individual displaying distinct traits.

View Article and Find Full Text PDF

Clustering frequency vectors is a challenging task on large data sets considering its high dimensionality and sparsity nature. Generalized Dirichlet multinomial (GDM) distribution is a competitive generative model for count data in terms of accuracy, yet its parameters estimation process is slow. The exponential-family approximation of the multivariate Polya distribution has shown to be efficient to train and cluster data directly, without dimensionality reduction.

View Article and Find Full Text PDF

Inhibition of oxidative phosphorylation (OXPHOS) by 1-cyclopropyl-4-(4-[(5-methyl-3-(3-[4-(trifluoromethoxy)phenyl]-1,2,4-oxadiazol-5-yl)-1H-pyrazol-1-yl)methyl]pyridin-2-yl)piperazine (BAY87-2243, abbreviated as B87), a complex I inhibitor, fails to kill human cancer cells in vitro. Driven by this consideration, we attempted to identify agents that engage in synthetically lethal interactions with B87. Here, we report that dimethyl α-ketoglutarate (DMKG), a cell-permeable precursor of α-ketoglutarate that lacks toxicity on its own, kills cancer cells when combined with B87 or other inhibitors of OXPHOS.

View Article and Find Full Text PDF

In the version of this article originally submitted, it was stated that the first three authors (Shaoyi_ Than, Yan Wang, Wei Xie) had contributed equally. However, in the published version this information was missing.

View Article and Find Full Text PDF

Cystic fibrosis is a disease caused by defective function of a chloride channel coupled to a blockade of autophagic flux. It has been proposed to use synthetic chloride transporters as pharmacological agents to compensate insufficient chloride fluxes. Here, we report that such chloride anionophores block autophagic flux in spite of the fact that they activate the pro-autophagic transcription factor EB (TFEB) coupled to the inhibition of the autophagy-suppressive mTORC1 kinase activity.

View Article and Find Full Text PDF

Cystic Fibrosis (CF) due to the ΔF508 mutation of cystic fibrosis transmembrane conductance regulator (CFTR) can be treated with a combination of cysteamine and Epigallocatechin gallate (EGCG). Since ECGC is not a clinically approved drug, we attempted to identify other compounds that might favourably interact with cysteamine to induce autophagy and thus rescuing the function of ΔF508 CFTR as a chloride channel in the plasma membrane. For this, we screened a compound library composed by chemically diverse autophagy inducers for their ability to enhance autophagic flux in the presence of cysteamine.

View Article and Find Full Text PDF

Acetyl-coenzyme A (AcCoA) is a major integrator of the nutritional status at the crossroads of fat, sugar, and protein catabolism. Here we show that nutrient starvation causes rapid depletion of AcCoA. AcCoA depletion entailed the commensurate reduction in the overall acetylation of cytoplasmic proteins, as well as the induction of autophagy, a homeostatic process of self-digestion.

View Article and Find Full Text PDF

Resveratrol is a polyphenol contained in red wine that has been amply investigated for its beneficial effects on organismal metabolism, in particular in the context of the so-called "French paradox," i.e., the relatively low incidence of coronary heart disease exhibited by a population with a high dietary intake of cholesterol and saturated fats.

View Article and Find Full Text PDF

Burkitt's lymphoma is a form of Non-Hodgkin's B-cell lymphoma. We report a case of Burkitt's lymphoma mimicking peritoneal carcinomatosis. We will discuss the imaging and clinical findings that differentiate between peritoneal carcinomatosis and Burkitt's lymphoma.

View Article and Find Full Text PDF

Following the screening of a battery of distinct small-interfering RNAs that target various components of the apoptotic machinery, we found that knockdown of the voltage-dependent anion channel 1 (VDAC1) was particularly efficient in preventing cell death induced by cisplatin (CDDP) in non-small cell lung cancer cells. Both the downregulation of VDAC1 and its chemical inhibition with 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid reduced the apoptosis-associated modifications induced by CDDP, including mitochondrial transmembrane potential dissipation and plasma membrane permeabilization. VDAC1 inhibition strongly reduced the CDDP-induced conformational activation of Bax, yet had no discernible effect on the activation of Bak, suggesting that VDAC1 acts downstream of Bak and upstream of Bax.

View Article and Find Full Text PDF

The viral mitochondrial inhibitor of apoptosis (vMIA) encoded by the human cytomegalovirus exerts cytopathic effects and neutralizes the proapoptotic endogenous Bcl-2 family member Bax by recruiting it to mitochondria, inducing its oligomerization and membrane insertion. Using a combination of computational modeling and mutational analyses, we addressed the structure-function relationship of the molecular interaction between the protein Bax and the viral antiapoptotic protein vMIA. We propose a model in which vMIA exhibits an overall fold similar to Bcl-X(L).

View Article and Find Full Text PDF

Mitochondrial membrane permeabilization (MMP) is considered as the "point-of-no-return" in numerous models of programmed cell death. Indeed, mitochondria determine the intrinsic pathway of apoptosis, and play a major role in the extrinsic route as well. MMP affects the inner and outer mitochondrial membranes (IM and OM, respectively) to a variable degree.

View Article and Find Full Text PDF

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a pleiotropic enzyme that is overexpressed in apoptosis and in several human chronic pathologies. Here, we report that the protein accumulates in mitochondria during apoptosis, and induces the pro-apoptotic mitochondrial membrane permeabilization, a decisive event of the intrinsic pathway of apoptosis. GAPDH was localized by immunogold labeling and identified by matrix-assisted laser desorption/ionization-time of flight and nano liquid chromatography mass spectroscopy/mass spectroscopy in the mitochondrion of various tissues and origins.

View Article and Find Full Text PDF

Mitochondria are vital for cellular bioenergetics and play a central role in determining the point-of-no-return of the apoptotic process. As a consequence, mitochondria exert a dual function in carcinogenesis. Cancer-associated changes in cellular metabolism (the Warburg effect) influence mitochondrial function, and the invalidation of apoptosis is linked to an inhibition of mitochondrial outer membrane permeabilization (MOMP).

View Article and Find Full Text PDF

Mitochondrial membrane permeabilization (MMP) is a critical step regulating apoptosis. Viruses have evolved multiple strategies to modulate apoptosis for their own benefit. Thus, many viruses code for proteins that act on mitochondria and control apoptosis of infected cells.

View Article and Find Full Text PDF

We report that the cytomegalovirus-encoded cell death suppressor vMIA binds Bax and prevents Bax-mediated mitochondrial membrane permeabilization by sequestering Bax at mitochondria in the form of a vMIA-Bax complex. vMIA mutants with a defective mitochondria-targeting domain retain their Bax-binding function but not their ability to suppress mitochondrial membrane permeabilization or cell death. vMIA does not seem to either specifically associate with Bak or suppress Bak-mediated mitochondrial membrane permeabilization.

View Article and Find Full Text PDF

Mitochondrial membrane permeabilization (MMP) constitutes an early event of the apoptotic process. MMP affects both mitochondrial membranes. Inner MMP leads to the dissipation of the inner transmembrane potential and outer MMP culminates in the efflux of apoptogenic factors.

View Article and Find Full Text PDF
Article Synopsis
  • The viral protein vMIA from human cytomegalovirus inhibits apoptosis by interacting with the pro-apoptotic protein Bax, a mechanism distinct from that of Bcl-2.* -
  • vMIA causes Bax to localize to the mitochondria and form large aggregates, preventing its typical pro-apoptotic function.* -
  • The findings suggest that vMIA effectively "freezes" Bax's activity, providing a new understanding of how viruses can manipulate apoptosis pathways to enhance their survival.*
View Article and Find Full Text PDF

The fatty acid palmitate can induce apoptosis. Here we show that the palmitate-induced dissipation of the mitochondrial transmembrane potential (Delta Psi m), which precedes nuclear apoptosis, is not prevented by inhibitors of mRNA synthesis, protein synthesis, caspases, or pro-apoptotic ceramide signaling. However, the mitochondrial and nuclear effects of palmitate are inhibited by overexpression of anti-apoptotic proto-oncogene product Bcl-2 and exacerbated by 2-bromo-palmitate as well as by carnitine.

View Article and Find Full Text PDF

The mitochondrial matrix can be specifically labeled by loading cells with calcein and simultaneous quenching of the non-mitochondrial calcein fluorescence with cobalt (Co2+). Positive staining of mitochondria thus requires that the inner mitochondrial membrane functions as a barrier separating calcein (within the matrix) from Co2+ (outside of the matrix). Upon induction of apoptosis, such calcein/Co2+ -labeled cells, demonstrate a decrease in the overall calcein fluorescence resulting from inner mitochondrial membrane permeabilization.

View Article and Find Full Text PDF

Cells expressing the envelope glycoprotein complex (Env) encoded by the human immunodeficiency virus can fuse with cells expressing Env receptors (CD4 and CXCR4). The resulting syncytia undergo apoptosis. We developed a cytofluorometric assay for the quantitation of syncytium formation and syncytial apoptosis.

View Article and Find Full Text PDF