Volcanic emissions in shallow vents influence the biogeochemistry of the sedimentary compartment, creating marked abiotic gradients. We assessed the spatial dynamics of the sediment compartment, as for the composition and origin of organic matter and associated prokaryotic community, in a volcanic shallow CO vent (Vulcano Island, Italy). Based on elemental (carbon, nitrogen content and their ratio) and isotopic composition (δC, δN and δS), the contribution of vent-derived organic matter (microbial mats) to sedimentary organic matter was high close to the vent, while the marine-derived end-members (seagrasses) contributed highly at increasing distance.
View Article and Find Full Text PDFBackground: Respiratory viral infections are a leading cause of severe diseases and mortality; therefore, novel treatments effective for their prevention are highly requested. Here, we identified a broad-spectrum antiviral activity of a natural exopolysaccharide, EPS T14, purified from a marine thermotolerant strain of strain T14.
Methods: The effects on human normal nasal epithelial cells (HNEpCs) following treatment with EPS T14 was evaluated at different time points and with increasing concentration of compound.
We report the ability of the crude biosurfactant (BS B3-15), produced by the marine, thermotolerant B3-15, to hinder the adhesion and biofilm formation of ATCC 27853 and ATCC 29213 to polystyrene and human cells. First, we attempted to increase the BS yield, optimizing the culture conditions, and evaluated the surface-active properties of cell-free supernatants. Under phosphate deprivation (0.
View Article and Find Full Text PDFThe eradication of bacterial biofilm represents a crucial strategy to prevent a clinical problem associated with microbial persistent infection. In this study we evaluated the ability of the exopolysaccharide (EPS) B3-15, produced by the marine B3-15, to prevent the adhesion and biofilm formation of ATCC 27853 and ATCC 29213 on polystyrene and polyvinyl chloride surfaces. The EPS was added at different times (0, 2, 4 and 8 h), corresponding to the initial, reversible and irreversible attachment, and after the biofilm development (24 or 48 h).
View Article and Find Full Text PDFThe surfactin-like lipopeptide (BS-SBP3) and the exopolysaccharide (EPS-SBP3) produced by the polyextremophilic SBP3 (DSM 103063) have been recently described as valuable biopolymers useful in biotechnological applications. To investigate the hydrating capabilities of BS-SBP3 and EPS-SBP3, here we evaluated (i) their wetting properties, measuring the contact angle; (ii) their moisture uptake abilities using the gravimetric method; and (iii) their hydrating states (from 0 to 160% / of water content) using ATR-FTIR spectroscopy. BS-SBP3 reduced the water contact angle on a hydrophobic surface from 81.
View Article and Find Full Text PDFAims: This study was to analyse the biomass production and fatty acids (FAs) profiles in a newly isolated chlorophyte, namely Coccomyxa AP01, under nutritionally balanced (NB) conditions (comparing nitrate and urea as nitrogen sources) and nitrogen or phosphate deprivation.
Methods And Results: Lipid yields was about 30%-40% of dried biomasses in all examined nutritional conditions. Under NB conditions, lipids were principally constituted by monounsaturated FAs, mainly represented by oleic acid, and saturated and polyunsaturated FAs at similar concentrations.
The conformational variation of the viral capsid structure plays an essential role both for the environmental resistance and acid nuclear release during cellular infection. The aim of this study was to evaluate how capsid rearrangement in engineered phages of M13 protects viral DNA and peptide bonds from damage induced by UV-C radiation. From in silico 3D modelling analysis, two M13 engineered phage clones, namely P9b and 12III1, were chosen for (i) chemical features of amino acids sequences, (ii) rearrangements in the secondary structure of their pVIII proteins and (iii) in turn the interactions involved in phage capsid.
View Article and Find Full Text PDFExtremophiles are optimal models in experimentally addressing questions about the effects of cosmic radiation on biological systems. The resistance to high charge energy (HZE) particles, and helium (He) ions and iron (Fe) ions (LET at 2.2 and 200 keV/µm, respectively, until 1000 Gy), of spores from two thermophiles, SBP3 and T14, and two psychrotolerants, sp.
View Article and Find Full Text PDFThe novel exopolysaccharide (EPS-B3-15) produced by the marine thermotolerant Bacillus licheniformis strain B3-15, constituted by mannose and glucose, has been recently reported as a valuable biopolymer in pharmaceutical applications. To dynamically characterize the thermal behavior of the whole EPS-B3-15 system, the Attenuated Total Reflectance Fourier Transform Infra-Red spectroscopy technique was used over a temperature range from ambient to 78.5 °C.
View Article and Find Full Text PDFA straightforward and green method for the synthesis of gold, silver, and silver chloride nanoparticles (Au NPs and Ag/AgCl NPs) was developed using three different microbial exopolymers (EP) as reducing and stabilizing agents. The exopolysaccharides and and the poly--glutamic acid were produced by thermophilic bacteria isolated from shallow hydrothermal vents off the Eolian Islands (Italy) in the Mediterranean Sea. The production of metal NPs was monitored by UV-Vis measurements by the typical plasmon resonance absorption peak and their antimicrobial activity towards Gram-positive and Gram- negative bacteria ( and ), as well as fungi () was investigated.
View Article and Find Full Text PDFSubmarine hydrothermal vents are inhabited by a variety of microorganisms capable of tolerating environmental extremes, making them ideal candidates to further expand our knowledge of the limitations for terrestrial life, including their ability to survive the exposure of spaceflight-relevant conditions. The spore resistance of two Bacillus spp. strains, APA and SBP3, isolated from two shallow vents off Panarea Island (Aeolian Islands, Italy), to artificial and environmental stressors (i.
View Article and Find Full Text PDFTo dynamically characterize the thermal properties of the fructose-rich exopolysaccharide (EPS1-T14), produced by the marine thermophilic Bacillus licheniformis T14, the Attenuated Total Reflectance Fourier Transform Infra-Red spectroscopy was coupled to variable temperature ranging from ambient to 80°C. The spectra were analyzed by the following innovative mathematical tools: i) non-ideal spectral deviation, ii) OH-stretching band frequency center shift, iii) spectral distance, and iv) wavelet cross-correlation analysis. The thermal restraint analysis revealed that the whole EPS1-T14 system possessed high stability until 80°C, and suggested that fucose was mainly involved in the EPS1-T14 thermal stability, whereas glucose was responsible for its molecular flexibility.
View Article and Find Full Text PDFHerpes simplex virus type 1 (HSV-1) is responsible of common and widespread viral infections in humans through the world, and of rare, but extremely severe, clinical syndromes in the central nervous system. The emergence of resistant strains to drugs actually in use encourages the searching for novel antiviral compounds, including those of natural origin. In this study, the recently described poly-γ-glutamic acid (γ-PGA-APA), produced by the marine thermotolerant Bacillus horneckiae strain APA, and previously shown to possess biological and antiviral activity, was evaluated for its anti-HSV-1 and immunomodulatory properties.
View Article and Find Full Text PDF