J Opt Soc Am A Opt Image Sci Vis
August 2024
A topology optimization method is presented and applied to a blazed diffraction grating in reflection under conical incidence. This type of grating is meant to disperse the incident light on one particular diffraction order, and this property is fundamental in spectroscopy. Conventionally, a blazed metallic grating is made of a sawtooth profile designed to work with the ±1st diffraction order in reflection.
View Article and Find Full Text PDFThe PISTIL interferometry has been recently developed for the wavefront sensing of phase delays (pistons) and tilts of segmented surfaces, used in many domains such as astronomy, high-power lasers or ophthalmology. In this paper, we propose a two-wavelength version of this interferometer developed to bypass the dynamic range limitation of the ambiguous 2π phase wrapping. Principle of the technique is presented, along with experimental results obtained with a demonstration deformable mirror PTT-111 from Iris AO.
View Article and Find Full Text PDFComputer generated holograms (CGHs) are powerful optical elements used in many fields, such as wavefront shaping, quality testing of complex optics, and anti-counterfeiting devices. The Lee algorithm is the most used to generate binary amplitude Fourier holograms. Grayscale CGHs are known to give a higher reconstruction quality than binary holograms, but they usually require a cumbersome production process.
View Article and Find Full Text PDFPhotochromic materials are attractive for the development of holograms for different reasons: they show a modulation of the complex refractive index, meaning they are suitable for both amplitude and phase holograms; they are self-developing materials, which do not require any chemical process after the light exposure to obtain the final hologram; the holograms are rewritable, making the system a convenient reconfigurable platform for these types of diffractive elements. In this paper, we will show the features of photochromic materials, in particular diarylethenes in terms of the modulation of a transparency and refractive index, which are mandatory for their use in holography. Moreover, we report on the strategies used to write binary and grayscale holograms and their achieved results.
View Article and Find Full Text PDFOptical micro-electro-mechanical systems (MEMS), micro-opto-electro-mechanical systems (MOEMS), or optical microsystems are devices or systems that interact with light through actuation or sensing at a micron or millimeter scale [...
View Article and Find Full Text PDFMicro-opto-electro-mechanical systems (MOEMS) Deformable Mirrors (DM) are key components for next generation optical instruments implementing innovative adaptive optics systems, both in existing telescopes and in the future ELTs. Characterizing these components well is critical for next generation instruments. This is done by interferometry, including surface quality measurement in static and dynamical modes, at ambient and in vacuum/cryo.
View Article and Find Full Text PDFComputer Generated Holograms (CGHs) are used for wavefront shaping and complex optics testing. Present technology allows for recording binary CGHs. We propose a Digital Micro-mirror Device (DMD) as a reconfigurable mask, to record rewritable binary and grayscale CGHs on a photochromic plate.
View Article and Find Full Text PDFA micromirror array composed of 2048 silicon micromirrors measuring 200 × 100 μm² and tilting by 25° was developed as a reconfigurable slit mask for multi-object spectroscopy (MOS) in astronomy. The fill factor, contrast, and mirror deformation at both room and cryogenic temperatures were investigated. Contrast was measured using an optical setup that mimics a MOS instrument, and mirror deformation was characterized using a Twyman-Green interferometer.
View Article and Find Full Text PDFWe have fabricated and characterized fully programmable diffraction gratings consisting of 64 silicon micro-mirrors. The mirrors are 700µm long and 50µm wide with a fill factor of 90%. They are actuated electrostatically and move down by 1.
View Article and Find Full Text PDFAs micro-optical components are introduced into optical systems, accurate surface characterization becomes important. We describe a method for quantitative evaluation of surface deformations based on Foucault's knife-edge test. By measurement of local slopes, the surface shape of each mirror in a micromirror array has been reconstructed with a subnanometer accuracy.
View Article and Find Full Text PDFWe study the reversible refractive index variations of optical thin films submitted to a high-power light flux. As a preliminary step, we study the thermorefractive coefficient ?n/?T and the laser damage threshold of our materials. From the hypothesis of a localized optical Kerr-type effect, we use the m-line technique to estimate the nonlinear refractive-index coefficients n(2) of TiO(2), Ta(2)O(5), and ZnS films with continuous illumination.
View Article and Find Full Text PDF