Publications by authors named "Zameer Hussain Shah"

The development of magnetically-actuated micro-robots is of great interest for emerging medical applications due to their inherent safety, low cost to manufacture, and flexibility. In many practical applications, precise control over the motion of the microrobots is a strong requirement. In these contexts, closed-loop control is a practical tool to adjust the microrobots' control inputs in real time.

View Article and Find Full Text PDF

In this study, we propose a simple and efficient method to fabricate three-lobed nonspherical Janus microrobots. These microrobots can be actuated by a harmless magnetic field. Utilizing organosilica as the material of choice, we leverage its versatile silane chemistry to enable various surface modifications and functionalities.

View Article and Find Full Text PDF

The organization of microscopic objects into specific structures with movable parts is a prerequisite for building sophisticated micromachines with complex functions, as exemplified by their macroscopic counterparts. Here we report the self-assembly of active and passive colloids into micromachinery with passive rotational parts. Depending on the attachment of the active colloid to a substrate, which varies the degrees of free freedom of the assembly, colloidal machines with rich internal rotational dynamics are realized.

View Article and Find Full Text PDF

Mobile microrobots have the potential to transform medical treatments based on therapeutic delivery. Specifically, microrobots are promising candidates for cell transportation in cell-based therapies. Despite recent progress in cellular manipulation by microrobots, there is a significant need to design and fabricate microrobots to advance the field further.

View Article and Find Full Text PDF

This study presents a microrobotic system that utilizes magnetic Janus microrobots and a 3D-printed magnetic tweezers setup controlled by electromagnetic coils to transport cells in a densely crowded environment. The system was successfully demonstrated to transport cells in a densely populated sample of cells. The results indicate that this microrobotic system could address challenges such as off-target delivery, thereby realizing the full potential of medical microrobots for this and other applications.

View Article and Find Full Text PDF

Untethered robots of the size of a few microns have attracted increasing attention for the potential to transform many aspects of manufacturing, medicine, health care, and bioengineering. Previously impenetrable environments have become available for high-resolution and manipulations as the size of the untethered robots goes down to the microscale. Nevertheless, the independent navigation of several robots at the microscale is challenging as they cannot have onboard transducers, batteries, and control like other multi-agent systems, due to the size limitations.

View Article and Find Full Text PDF

Light-actuated micromachines are of enormous interest due to their ability to harvest light for triggering catalytic reactions to acquire free energy for mechanical work. This work presents an inorganic-organic hybrid copolymeric poly(cyclotriphosphazene-co-barbituric acid) colloid, which displays multiwavelength excited emission and catalytic activities, exploiting the unique structural, chemical, and optical features of inorganic heterocyclic ring hexachlorocyclotriphosphazene and organic co-monomer barbituric acid. Specifically, this work reveals particle-resolved unusual multicolor emission under excitation with the same or different wavelengths of light using fluorescence microscopy.

View Article and Find Full Text PDF

We study experimentally the effect of added salt in the phoretic motion of chemically driven colloidal particles. We show that the response of passive colloids to a fixed active colloid, be it attractive or repulsive, depends on the ionic strength, the ζ potential, and the size of the passive colloids. We further report that the direction of self-propulsion of Janus colloids can be reversed by decreasing their ζ potential below a critical value.

View Article and Find Full Text PDF

We investigated experimentally and theoretically the interactions and assembly of rodlike colloids in a ferrofluid confined at solid/liquid interface by the gravity under external magnetic fields. We first derived analytical expressions for the interaction energy of a single rod with the external magnetic field and the interaction between two rods using classical electromagnetism. The theory well captured the experimentally observed alignment of a single rod along the field direction under an in-plane field and switching between the horizontal and the vertical configurations in an out-of-plane field due to the competition between the magnetic energy and the gravitational energy.

View Article and Find Full Text PDF

We report the synthesis of silver-based Janus micromotors that self-propel at 3.5 μm s and speed up to 45 μm s in 0.044 and 1.

View Article and Find Full Text PDF

Viral capsid-like particles tiled with mosaic patches have attracted great attention as they imitate nature's design to achieve advanced material properties and functions. Here, we develop a facile one-pot soft-template method to synthesize biomimetic gold capsid-like colloids with tunable particle size and surface roughness. Uniform submicron-to-micron-sized hollow gold colloidal particles are successfully achieved by using tannic acids as soft templates and reducing agents, which first self-assemble into spherical complex templates before the reduction of Au ions via their surface hydroxyl groups.

View Article and Find Full Text PDF

Ammonia-borane (NH·BH; AB) has been considered as an excellent chemical material for hydrogen storage. However, developing highly efficient catalysts for continuous hydrogen generation from AB is still a challenge for future fuel cell applications. The combination of Pt with Ni is an effective strategy to achieve active bimetallic nanocatalyst, and the particle size has proved to play a crucial role in determining its final activity.

View Article and Find Full Text PDF

Silica protected CuNi bimetallic nanoparticles (CuNi@SiO) were successfully prepared by a modified co-reduction method. Typically, ammoniacal Cu(II) and Ni(II) were firstly dispersed and encapsulated inside silica by the method of reverse microemulsion. Then, ultra small CuO and NiO particles were in-situ formed during calcination under air.

View Article and Find Full Text PDF

The crystallinity of cadmium titanate (CdTiO3) was greatly improved when synthesized under mild reaction conditions, in the presence of chloride. The highly crystalline CdTiO3 showed much enhanced photodegradation of methyl orange (MO) under simulated sunlight. CdTiO3 was characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), N2 adsorption/desorption, photoluminescence (PL), and UV/vis spectrometry.

View Article and Find Full Text PDF

Silica encapsulated ultrasmall CuO quantum dots (QDs; CuO@SiO2) were synthesized by reverse microemulsion. The CuO QDs with sizes ranging from 2.0 to 1.

View Article and Find Full Text PDF

Silica-based nanocomposites with amorphous silica as the matrix or carrier along with a functional component have been extensively investigated. These nanocomposites combine the advantages of both silica and the functional components, demonstrating great potential for various applications. To synthesize such composites, one of the most frequently used methods is reverse microemulsion due to its convenient control over the size, shape, and structures.

View Article and Find Full Text PDF