Publications by authors named "Zambonino-Infante J"

Global change puts coastal systems under pressure, affecting the ecology and physiology of marine organisms. In particular, fish larvae are sensitive to environmental conditions, and their fitness is an important determinant of fish stock recruitment and fluctuations. To assess the combined effects of warming, acidification and change in food quality, herring larvae were reared in a control scenario (11°C*pH 8.

View Article and Find Full Text PDF

Incorporation of dietary peptides has been correlated with decreased presence of skeletal abnormalities in marine larvae. In an attempt to clarify the effect of smaller protein fractions on fish larval and post-larval skeleton, we designed three isoenergetic diets with partial substitution of their protein content with 0% (C), 6% (P6) and 12% (P12) shrimp di- and tripeptides. Experimental diets were tested in zebrafish under two regimes, with inclusion (ADF-Artemia and dry feed) or lack (DF-dry feed only) of live food.

View Article and Find Full Text PDF

Fish skeletal development has long been correlated with nutritional factors. Lack of zebrafish nutritional standardization, especially during the early stages, decreases the reproducibility of the conducted research. The present study represents an evaluation of four commercial (A, D, zebrafish specific; B, generic for freshwater larvae; C, specific for marine fish larvae) and one experimental (Ctrl) early diets on zebrafish skeletal development.

View Article and Find Full Text PDF

Haemal lordosis, a frequent skeletal deformity in teleost fish, has long been correlated with increased mechanical loads induced by swimming activity. In the present study, we examine whether juvenile zebrafish can recover from haemal lordosis and explore the musculoskeletal mechanisms involved. Juveniles were subjected to a swimming challenge test (SCT) that induced severe haemal lordosis in 49% of the animals and then immediately transferred them to 0.

View Article and Find Full Text PDF

The absorption of anthropogenic carbon dioxide from the atmosphere by oceans generates rapid changes in seawater carbonate system and pH, a process termed ocean acidification. Exposure to acidified water can impact the allostatic load of marine organism as the acclimation to suboptimal environments requires physiological adaptive responses that are energetically costly. As a consequence, fish facing ocean acidification may experience alterations of their stress response and a compromised ability to cope with additional stress, which may impact individuals' life traits and ultimately their fitness.

View Article and Find Full Text PDF

Mitochondrial metabolism varies significantly between individuals of the same species and can influence animal performance, such as growth. However, growth rate is usually determined before the mitochondrial assay. The hypothesis that natural variation in mitochondrial metabolic traits is linked to differences in both previous and upcoming growth remains untested.

View Article and Find Full Text PDF

Plastic pollution in marine ecosystems constitutes an important threat to marine life. For vertebrates, macro/microplastics can obstruct and/or transit into the airways and digestive tract whereas nanoplastics (NPs; < 1000 nm) have been observed in non-digestive tissues such as the liver and brain. Whether NPs cross the intestinal epithelium to gain access to the blood and internal organs remains controversial, however.

View Article and Find Full Text PDF

Since sensory system allows organisms to perceive and interact with their external environment, any disruption in their functioning may have detrimental consequences on their survival. Ocean acidification has been shown to potentially impair olfactory system in fish and it is therefore essential to develop biological tools contributing to better characterize such effects. The olfactory marker protein (omp) gene is involved in the maturation and the activity of olfactory sensory neurons in vertebrates.

View Article and Find Full Text PDF

Targeting in zebrafish fast growth, high survival rates and improved reproductive performance has led over the last years in variable feeding regimes between different facilities. Despite its significance on fish function and welfare, normal skeletal development has rarely been evaluated in establishing the best feeding practices for zebrafish. The aim of this study was to establish a protocol for normal skeletal development, growth and survival of zebrafish larvae through live feed-to-microdiet transition at an appropriate rate.

View Article and Find Full Text PDF

Elevated amounts of atmospheric CO are causing ocean acidification (OA) that may affect marine organisms including fish species. While several studies carried out in fish revealed that OA induces short term dysfunction in sensory systems including regulation of neurons activity in olfactory epithelium, information on the effects of OA on other physiological processes and actors is scarcer. In the present study we focused our attention on a European sea bass (Dicentrarchus labrax) sghC1q gene, a member of the C1q-domain-containing (C1qDC) protein family.

View Article and Find Full Text PDF

When organisms are unable to feed ad libitum they may be more susceptible to negative effects of environmental stressors such as ocean acidification and warming (OAW). We reared sea bass (Dicentrarchus labrax) at 15 or 20 °C and at ambient or high PCO (650 versus 1750 µatm PCO; pH = 8.1 or 7.

View Article and Find Full Text PDF

The decrease in ocean pH that results from the increased concentration of dissolved carbon dioxide (CO) is likely to influence many physiological functions in organisms. It has been shown in different fish species that ocean acidification (OA) mainly affects sensory systems, including olfaction. Impairment of olfactory function may be due to a dysfunction of the GABAergic system and to an alteration of neuronal plasticity in the whole brain and particularly in olfactory bulbs.

View Article and Find Full Text PDF

Ocean acidification and ocean warming (OAW) are simultaneously occurring and could pose ecological challenges to marine life, particularly early life stages of fish that, although they are internal calcifiers, may have poorly developed acid-base regulation. This study assessed the effect of projected OAW on key fitness traits (growth, development and swimming ability) in European sea bass (Dicentrarchus labrax) larvae and juveniles. Starting at 2 days post-hatch (dph), larvae were exposed to one of three levels of PCO2 (650, 1150, 1700 μatm; pH 8.

View Article and Find Full Text PDF

The role of phenotypic plasticity in the acclimation and adaptive potential of an organism to global change is not currently accounted for in prediction models. The high plasticity of marine fishes is mainly attributed to their early stages, during which morphological, structural and behavioural functions are particularly sensitive to environmental constraints. This developmental plasticity can determine later physiological performances and fitness, and may further affect population dynamics and ecosystem functioning.

View Article and Find Full Text PDF
Article Synopsis
  • * Research showed that lower HUFA levels combined with higher temperatures led to changes in heart muscle function, such as increased calcium channel activity and improved force generation.
  • * This enhanced cardiac response, while potentially beneficial in the short term, comes with increased energy costs and could negatively impact vital functions like growth, reproduction, and migration.
View Article and Find Full Text PDF

Digestive system functionality of fish larvae relies on the onset of genetically pre-programmed and extrinsically influenced digestive functions. This study explored how algal supplementation (green-water) until 14 days post hatch (dph) and the ingestion of food [enriched rotifer () paste] from 15 dph onward affects molecular maturation and functionality of European eel larval ingestion and digestion mechanisms. For this, we linked larval biometrics to expression of genes relating to appetite [ghrelin (), cholecystokinin ()], food intake [proopiomelanocortin ()], digestion [trypsin (), triglyceride lipase (), amylase ()], energy metabolism [ATP synthase F0 subunit 6 (), cytochrome--oxidase 1 ()], growth [insulin-like growth factor ()] and thyroid metabolism [thyroid hormone receptors (, )].

View Article and Find Full Text PDF

The ecological and economic importance of fish act as a brake on the development of chemical dispersants as operational instruments following oil spills. Although a valuable and consistent body of knowledge exists, its use in spill response is limited. The objective of the present study was to increase current knowledge base to facilitate the translation of published data into information of operational value.

View Article and Find Full Text PDF

European eel (Anguilla anguilla) is a euryhaline species, that has adapted to cope with both, hyper- and hypo-osmotic environments. This study investigates the effect of salinity, from a morphological and molecular point of view on European eel larvae reared from 0 to 12 days post hatch (dph). Offspring reared in 36 practical salinity units (psu; control), were compared with larvae reared in six scenarios, where salinity was decreased on 0 or 3 dph and in rates of 1, 2 or 4 psu/day, towards iso-osmotic conditions.

View Article and Find Full Text PDF

Environmental conditions, to which organisms are exposed during all their life, may cause possible adaptive responses with consequences in their subsequent life-history trajectory. The objective of this study was to investigate whether ecologically relevant combinations of hypoxia (40% and 100% air saturation) and temperature (15° and 20 °C), occurring during the larval period of European sea bass larvae (Dicentrarchus labrax), could have long-lasting impacts on the physiology of resulting juveniles. Hypoxic challenge tests were performed over one year to give an integrative evaluation of physiological performance.

View Article and Find Full Text PDF

Thyroid hormones (THs) are key regulators of growth, development, and metabolism in vertebrates and influence early life development of fish. TH is produced in the thyroid gland (or thyroid follicles) mainly as T4 (thyroxine), which is metabolized to T3 (3,5,3'-triiodothyronine) and T2 (3,5-diiodothyronine) by deiodinase (DIO) enzymes in peripheral tissues. The action of these hormones is mostly exerted by binding to a specific nuclear thyroid hormone receptor (THR).

View Article and Find Full Text PDF

Several physiological functions in fish are shaped by environmental stimuli received during early life. In particular, early-life hypoxia has been reported to have long-lasting effects on fish metabolism, with potential consequences for fish life history traits. In the present study, we examine whether the synergistic stressors hypoxia (40% and 100% air saturation) and temperature (15° and 20°C), encountered during early life, could condition later metabolic response in European sea bass (Dicentrarchus labrax) juveniles.

View Article and Find Full Text PDF

Temperature is important for optimization of rearing conditions in aquaculture, especially during the critical early life history stages of fish. Here, we experimentally investigated the impact of temperature (16, 18, 20, 22 and 24°C) on thermally induced phenotypic variability, from larval hatch to first-feeding, and the linked expression of targeted genes [heat shock proteins (hsp), growth hormone (gh) and insulin-like growth factors (igf)] associated to larval performance of European eel, Anguilla anguilla. Temperature effects on larval morphology and gene expression were investigated throughout early larval development (in real time from 0 to 18 days post hatch) and at specific developmental stages (hatch, jaw/teeth formation, and first-feeding).

View Article and Find Full Text PDF

Ocean acidification is a recognized consequence of anthropogenic carbon dioxide (CO) emission in the atmosphere. Despite its threat to marine ecosystems, little is presently known about the capacity for fish to respond efficiently to this acidification. In adult fish, acid-base regulatory capacities are believed to be relatively competent to respond to hypercapnic conditions.

View Article and Find Full Text PDF
Article Synopsis
  • Most thermal tolerance research on fish mainly focuses on juveniles and adults, leaving larvae largely unstudied despite their narrow temperature tolerance range.
  • A review of 53 studies showed diverse methodologies in assessing thermal limits for fish larvae, complicating comparisons across species.
  • This study measured the Critical Thermal Maximum (CTmax) of Atlantic herring and European seabass larvae using a dynamic method, revealing that herring have a lower CTmax and that factors like warming rate and acclimation temperature significantly affect thermal tolerance.
View Article and Find Full Text PDF

A two months common garden experiment was carried out to explore the potential differences of energy metabolism in northern core (France, 50°N and 47°N) vs southern peripheral (Portugal, 41°N) populations of European flounder Platichthys flesus, submitted to cold condition (CC: water temperature = 10 °C) and to warm and hypoxic condition (WHC: water temperature = 22 °C, and moderate hypoxia with O saturation = 40% during the last 6 days). Convergent growth rates (in length) were observed in the different populations and conditions, when the southern peripheral population of Portugal did not grow under cold conditions. A general reduction in liver lipid storage was observed in all populations subjected to WHC when compared to CC, whereas muscle lipid storage was unaffected.

View Article and Find Full Text PDF