Publications by authors named "Zalups R"

Owing to advances in modern medicine, life expectancies are lengthening and leading to an increase in the population of older individuals. The aging process leads to significant alterations in many organ systems, with the kidney being particularly susceptible to age-related changes. Within the kidney, aging leads to ultrastructural changes such as glomerular and tubular hypertrophy, glomerulosclerosis, and tubulointerstitial fibrosis, which may compromise renal plasma flow (RPF) and glomerular filtration rate (GFR).

View Article and Find Full Text PDF

Chronic kidney disease is characterized by a progressive and permanent loss of functioning nephrons. In order to compensate for this loss, the remaining functional nephrons undergo significant structural and functional changes. We hypothesize that luminal uptake of inorganic mercury (Hg), as a conjugate of cysteine (Cys; Cys-S-Hg-S-Cys), is enhanced in S2 segments of proximal tubules from the remnant kidney of uninephrectomized (NPX) rabbits.

View Article and Find Full Text PDF

Mercury exists in the environment in various forms, all of which pose a risk to human health. Despite guidelines regulating the industrial release of mercury into the environment, humans continue to be exposed regularly to various forms of this metal via inhalation or ingestion. Following exposure, mercuric ions are taken up by and accumulate in numerous organs, including brain, intestine, kidney, liver, and placenta.

View Article and Find Full Text PDF

Aging often results in progressive losses of functioning nephrons, which can lead to a significant reduction in overall renal function. Because of age-related pathological changes, the remaining functional nephrons within aged kidneys may be unable to fully counteract physiological and/or toxicological challenges. We hypothesized that when the total functional renal mass of aged rats is reduced by 50%, the nephrons within the remnant kidney do not fully undergo the functional and physiological changes that are necessary to maintain normal fluid and solute homeostasis.

View Article and Find Full Text PDF

Environmental toxicants such as methylmercury have been shown to negatively impact fetal health. Despite the prevalence of inorganic mercury (Hg(2+)) in the environment and the ability of methylmercury to biotransform into Hg(2+), little is known about the ability of Hg(2+) to cross the placenta into fetal tissues. Therefore, it is important to understand the handing and disposition of Hg(2+) in the reproductive system.

View Article and Find Full Text PDF

Secretion of inorganic mercury (Hg(2+)) from proximal tubular cells into the tubular lumen has been shown to involve the multidrug resistance-associated protein 2 (Mrp2). Considering similarities in localization and substrate specificity between Mrp2 and the breast cancer resistance protein (Bcrp), we hypothesize that Bcrp may also play a role in the proximal tubular secretion of mercuric species. In order to test this hypothesis, the uptake of Hg(2+) was examined initially using inside-out membrane vesicles containing Bcrp.

View Article and Find Full Text PDF

The role of the multi-resistance protein 2 (Mrp2) in the nephropathy induced by inorganic mercuric mercury (Hg(2+)) was studied in rats (TR(-)) and mice (Mrp2(-/-)), which lack functional Mrp2, and control animals. Animals were exposed to nephrotoxic doses of HgCl2. Forty-eight or 24 hours after exposure, tissues were harvested and analyzed for Hg content and markers of injury.

View Article and Find Full Text PDF

Progressive loss of functioning nephrons, secondary to age-related glomerular disease, can impair the ability of the kidneys to effectively clear metabolic wastes and toxicants from blood. Additionally, as renal mass is diminished, cellular hypertrophy occurs in functional nephrons that remain. We hypothesize that these nephrons are exposed to greater levels of nephrotoxicants, such as inorganic mercury (Hg(2+)), and thus are at an increased risk of becoming intoxicated by these compounds.

View Article and Find Full Text PDF

The molecular structures of a series of 1,3-propanedithiols that contain carboxylic acid groups, namely - and -2,4-dimercaptoglutaric acid (HDMGA) and 2-carboxy-1,3-propanedithiol (HDMCP), have been determined by X-ray diffraction. Each compound exhibits two centrosymmetric intermolecular hydrogen bonding interactions between pairs of carboxylic acid groups, which result in a dimeric structure for HDMCP and a polymeric tape-like structure for - and -HDMGA. Significantly, the hydrogen bonding motifs observed for - and -HDMGA are very different to those observed for the 1,2-dithiol, -2,3-dimercaptosuccinic acid (-HDMSA), in which the two oxygen atoms of each carboxylic acid group hydrogen bond to two different carboxylic acid groups, thereby resulting in a hydrogen bonded sheet-like structure rather than a tape.

View Article and Find Full Text PDF

Multidrug resistance-associated proteins (MRP) 2 and 4 are localized in proximal tubular epithelial cells and participate in the renal elimination of xenobiotics. MRP2 has also been implicated in the renal and hepatic elimination of mercury. The current study tested the hypothesis that MRP2 and MRP4 are involved in renal and hepatic handling of inorganic mercury (Hg(2+)).

View Article and Find Full Text PDF

Methylmercury is a prevalent environmental toxicant that can have deleterious effects on a developing fetus. Previous studies indicate that the multidrug resistance-associated protein 2 (Mrp2) is involved in renal and hepatic export of mercuric ions. Therefore, we hypothesize that Mrp2 is also involved in export of mercuric ions from placental trophoblasts and fetal tissues.

View Article and Find Full Text PDF

Lumen-to-cell transport, cellular accumulation, and toxicity of L-cysteine (Cys), glutathione (GSH) and N-acetylcysteine (NAC) S-conjugates of methylmercury (CH(3)Hg(+)) were evaluated in isolated, perfused rabbit proximal tubular segments. When these conjugates were perfused individually through the lumen of S(2) segments of the proximal tubule it was found that Cys-S-CH(3)Hg and GSH-S-CH(3)Hg were transported avidly, while NAC-S-CH(3)Hg was transported minimally. In addition, 95% of the (203)Hg taken up by the tubular cells was associated with precipitable proteins of the tubule, while very little was found in the acid-soluble cytosol.

View Article and Find Full Text PDF

Within the body of this review, we provide updates on the mechanisms involved in the renal handling mercury (Hg) and the vicinal dithiol complexing/chelating agents, 2,3-bis(sulfanyl)propane-1-sulfonate (known formerly as 2,3-dimercaptopropane-1-sulfonate, DMPS) and meso-2,3-bis(sulfanyl)succinate (known formerly as meso-2,3-dimercaptosuccinate, DMSA), with a focus on the therapeutic effects of these dithiols following exposure to different chemical forms of Hg. We begin by reviewing briefly some of the chemical properties of Hg, with an emphasis on the high bonding affinity between mercuric ions and reduced sulfur atoms, principally those contained in protein and nonprotein thiols. A discussion is provided on the current body of knowledge pertaining to the handling of various mercuric species within the kidneys, focusing on the primary cellular targets that take up and are affected adversely by these species of Hg, namely, proximal tubular epithelial cells.

View Article and Find Full Text PDF

Anthropogenic practices and recycling in the environment through natural processes result in release of potentially harmful levels of mercury into the biosphere. Mercury, especially organic forms, accumulates in the food chain. Mercury reacts readily with sulfur-containing compounds and often exists as a thiol S-conjugate, such as the l-cysteine (Cys)-S-conjugate of methylmercury (CH(3)Hg-S-Cys) or inorganic mercury (Cys-S-Hg-S-Cys).

View Article and Find Full Text PDF

Mercuric ions accumulate preferentially in renal tubular epithelial cells and bond with intracellular thiols. Certain metal-complexing agents have been shown to promote extraction of mercuric ions via the multidrug resistance-associated protein 2 (MRP2). Following exposure to a non-toxic dose of inorganic mercury (Hg²+), in the absence of complexing agents, tubular cells are capable of exporting a small fraction of intracellular Hg²+ through one or more undetermined mechanisms.

View Article and Find Full Text PDF

Owing to the prevalence of mercury in the environment, the risk of human exposure to this toxic metal continues to increase. Following exposure to mercury, this metal accumulates in numerous organs, including brain, intestine, kidneys, liver, and placenta. Although a number of mechanisms for the transport of mercuric ions into target organs were proposed in recent years, these mechanisms have not been characterized completely.

View Article and Find Full Text PDF

In the present study, we evaluated the disposition of inorganic mercury (Hg(2+)) in sham-operated and 75% nephrectomized (NPX) Wistar and transport-deficient (TR(-)) rats treated with saline or the chelating agent meso-2,3-dimercaptosuccinic acid (DMSA). Based on previous studies, DMSA and TR(-) rats were used as tools to examine the potential role of multidrug-resistance protein 2 (MRP2) in the disposition of Hg(2+) during renal insufficiency. All animals were treated with a low dose (0.

View Article and Find Full Text PDF

Unlabelled: Lumen-to-cell transport, cellular accumulation, and toxicity of cadmium as ionic cadmium (Cd(2+)) or as the L-cysteine (Cys) or D,L-homocysteine (Hcy) S-conjugate of cadmium (Cys-S-Cd-S-Cys, Hcy-S-Cd-S-Hcy) were studied in isolated, perfused rabbit proximal tubular segments. When Cd(2+) (0.73 microM) or Cys-S-Cd-S-Cys (0.

View Article and Find Full Text PDF
Article Synopsis
  • Mercury exposure from dental amalgams and vaccines is generally not a significant health risk, but a small subset of individuals may be more susceptible to its effects.
  • Individual differences in how mercury is processed in the body (toxicokinetics) can explain varying susceptibilities among people, similar to findings in a study with specific mouse strains.
  • The study revealed that male A.SW mice had significantly higher mercury retention in their bodies compared to females and another mouse strain, with kidneys playing a major role in mercury accumulation and elimination, indicating that multiple genetic factors influence how mercury affects different individuals.
View Article and Find Full Text PDF

Methylmercury (CH3Hg+) is a serious environmental toxicant. Exposure to this metal during pregnancy can cause serious neurological and developmental defects in a developing fetus. Surprisingly, little is known about the mechanisms by which mercuric ions are transported across the placenta.

View Article and Find Full Text PDF

2, 3-Dimercaptopropane-1-sulfonic acid (DMPS) and meso-2, 3-Dimercaptosuccinic acid (DMSA) are dithiols used to treat humans exposed to methylmercury (CH(3)Hg(+)). After treatment, significant amounts of mercury are eliminated rapidly from the kidneys and are excreted in urine. In the present study, we extended our previous studies by testing the hypothesis that MRP2 mediates the secretion of DMPS or DMSA S-conjugates of CH(3)Hg(+).

View Article and Find Full Text PDF

Cysteine (Cys) and homocysteine (Hcy)-S-conjugates of inorganic mercury (Hg2+) are transportable species of Hg2+ that are taken up readily by proximal tubular cells. The metal chelators, 2,3-dimercaptopropane-1-sulfonic acid (DMPS) and meso-2,3-dimercaptosuccinic acid (DMSA), have been used successfully to extract Hg2+ from these cells, presumably via the multidrug resistance protein (Mrp2). In the current study, we tested the hypothesis that Mrp2 is involved in the DMPS- and DMSA-mediated extraction of Hg2+ following administration of Hg2+ as an S-conjugate of Cys or Hcy.

View Article and Find Full Text PDF

Current therapies for inorganic mercury (Hg(2+)) intoxication include administration of a metal chelator, either 2,3-dimercaptopropane-1-sulfonic acid (DMPS) or meso-2,3-dimercaptosuccinic acid (DMSA). After exposure to either chelator, Hg(2+) is rapidly eliminated from the kidneys and excreted in the urine, presumably as an S-conjugate of DMPS or DMSA. The multidrug resistance protein 2 (Mrp2) has been implicated in this process.

View Article and Find Full Text PDF

Inorganic mercury (Hg(2+)) is a prevalent environmental contaminant to which exposure to can damage rod photoreceptor cells and compromise scotopic vision. The retinal pigment epithelium (RPE) likely plays a role in the ocular toxicity associated with Hg(2+) exposure in that it mediates transport of substances to the photoreceptor cells. In order for Hg(2+) to access photoreceptor cells, it must first be taken up by the RPE, possibly by mechanisms involving transporters of essential nutrients.

View Article and Find Full Text PDF

Although there is evidence indicating that mononuclear phagocytes can take up mercury by some forms of endocytosis, very little is known about the potential for the uptake of mercuric species by carrier-mediated processes. Thus, we hypothesized that monocytes also possess mechanisms allowing these cells to take up inorganic mercury (Hg2+) and/or methylmercury (CH3Hg+) as cysteine (Cys) and/or homocysteine (Hcy) S-conjugates by certain membrane transport proteins. The specific thiol S-conjugates were chosen for study because our laboratory and those of some other investigators have demonstrated that these species of mercury are indeed transportable substrates for several membrane transport proteins in certain types of epithelial cells.

View Article and Find Full Text PDF