Publications by authors named "Zallo E"

InAs semiconductor quantum dots (QDs) emitting in the near-infrared are promising platforms for on-demand single-photon sources and spin-photon interfaces. However, the realization of quantum-photonic nanodevices emitting in the telecom windows with similar performance remains an open challenge. In particular, nanophotonic devices incorporating quantum light emitting diodes in the telecom C-band based on GaAs substrates are still lacking due to the relaxation of the lattice constant along the InGaAs graded layer which makes the implementation of electrically contacted devices challenging.

View Article and Find Full Text PDF

The structural studies of two-dimensional (2D) van der Waals heterostructures and understanding of their relationship with the orientation of crystalline substrates using transmission electron microscopy (TEM) presents a challenge in developing an easy-to-use plan-view specimen preparation technique. In this report, we introduce a simple approach for high-quality plan-view specimen preparation utilizing a dual beam system comprising focused ion beam and scanning electron microscopy. To protect the atomically thin 2D heterostructure during the preparation process, we employ an epoxy layer.

View Article and Find Full Text PDF

Enrichment of GeSbTe alloys with germanium has been proposed as a valid approach to increase the crystallization temperature and therefore to address high-temperature applications of non-volatile phase change memories, such as embedded or automotive applications. However, the tendency of Ge-rich GeSbTe alloys to decompose with the segregation of pure Ge still calls for investigations on the basic mechanisms leading to element diffusion and compositional variations. With the purpose of identifying some possible routes to limit the Ge segregation, in this study, we investigate Ge-rich SbTe and Ge-rich GeSbTe with low (<40 at %) or high (>40 at %) amounts of Ge.

View Article and Find Full Text PDF

Hybrid interfaces between distinct quantum systems play a major role in the implementation of quantum networks. Quantum states have to be stored in memories to synchronize the photon arrival times for entanglement swapping by projective measurements in quantum repeaters or for entanglement purification. Here, we analyze the distortion of a single-photon wave packet propagating through a dispersive and absorptive medium with high spectral resolution.

View Article and Find Full Text PDF

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

View Article and Find Full Text PDF

Deep cooling of electron and nuclear spins is equivalent to achieving polarization degrees close to 100% and is a key requirement in solid-state quantum information technologies. While polarization of individual nuclear spins in diamond and SiC (ref. ) reaches 99% and beyond, it has been limited to 50-65% for the nuclei in quantum dots.

View Article and Find Full Text PDF

We demonstrate the first wavelength-tunable electrically pumped source of nonclassical light that can emit photons with wavelength in resonance with the D transitions of Rb atoms. The device is fabricated by integrating a novel GaAs single-quantum-dot light-emitting diode (LED) onto a piezoelectric actuator. By feeding the emitted photons into a 75 mm long cell containing warm Rb vapor, we observe slow-light with a temporal delay of up to 3.

View Article and Find Full Text PDF

The present work displays a route to design strain gradients at the interface between substrate and van der Waals bonded materials. The latter are expected to grow decoupled from the substrates and fully relaxed and thus, by definition, incompatible with conventional strain engineering. By the usage of passivated vicinal surfaces we are able to insert strain at step edges of layered chalcogenides, as demonstrated by the tilt of the epilayer in the growth direction with respect of the substrate orientation.

View Article and Find Full Text PDF

We explore a method to achieve electrical control over the energy of on-demand entangled-photon emission from self-assembled quantum dots (QDs). The device used in our work consists of an electrically tunable diode-like membrane integrated onto a piezoactuator, which is capable of exerting a uniaxial stress on QDs. We theoretically reveal that, through application of the quantum-confined Stark effect to QDs by a vertical electric field, the critical uniaxial stress used to eliminate the fine structure splitting of QDs can be linearly tuned.

View Article and Find Full Text PDF

A combination of far-infrared and Raman spectroscopy is employed to investigate vibrational modes and the carrier behavior in amorphous and crystalline ordered GeTe-Sb2Te3 alloys (GST) epitaxially grown on Si(111). The infrared active GST mode is not observed in the Raman spectra and vice versa, indication of the fact that inversion symmetry is preserved in the metastable cubic phase in accordance with the Fm3 space group. For the trigonal phase, instead, a partial symmetry break due to Ge/Sb mixed anion layers is observed.

View Article and Find Full Text PDF

Phase Change Materials (PCMs) are unique compounds employed in non-volatile random access memory thanks to the rapid and reversible transformation between the amorphous and crystalline state that display large differences in electrical and optical properties. In addition to the amorphous-to-crystalline transition, experimental results on polycrystalline GeSbTe alloys (GST) films evidenced a Metal-Insulator Transition (MIT) attributed to disorder in the crystalline phase. Here we report on a fundamental advance in the fabrication of GST with out-of-plane stacking of ordered vacancy layers by means of three distinct methods: Molecular Beam Epitaxy, thermal annealing and application of femtosecond laser pulses.

View Article and Find Full Text PDF

The prospect of using the quantum nature of light for secure communication keeps spurring the search and investigation of suitable sources of entangled photons. A single semiconductor quantum dot is one of the most attractive, as it can generate indistinguishable entangled photons deterministically and is compatible with current photonic-integration technologies. However, the lack of control over the energy of the entangled photons is hampering the exploitation of dissimilar quantum dots in protocols requiring the teleportation of quantum entanglement over remote locations.

View Article and Find Full Text PDF

Triggered sources of entangled photon pairs are key components in most quantum communication protocols. For practical quantum applications, electrical triggering would allow the realization of compact and deterministic sources of entangled photons. Entangled-light-emitting-diodes based on semiconductor quantum dots are among the most promising sources that can potentially address this task.

View Article and Find Full Text PDF

The concept of Fourier synthesis is heavily used in both consumer electronic products and fundamental research. In the latter, pulse shaping is key to dynamically initializing, probing and manipulating the state of classical or quantum systems. In NMR, for instance, shaped pulses have a long-standing tradition and the underlying fundamental concepts have subsequently been successfully extended to optical frequencies and even to the implementation of quantum gate operations.

View Article and Find Full Text PDF

Entanglement resources are key ingredients of future quantum technologies. If they could be efficiently integrated into a semiconductor platform, a new generation of devices could be envisioned, whose quantum-mechanical functionalities are controlled via the mature semiconductor technology. Epitaxial quantum dots (QDs) embedded in diodes would embody such ideal quantum devices, but a fine-structure splitting (FSS) between the bright exciton states lowers dramatically the degree of entanglement of the sources and hampers severely their real exploitation in the foreseen applications.

View Article and Find Full Text PDF

The decrease of thermal conductivity is crucial for the development of efficient thermal energy converters. Systems composed of a periodic set of very thin layers show among the smallest thermal conductivities reported to-date. Here, we fabricate in an unconventional but straightforward way hybrid superlattices consisting of a large number of nanomembranes mechanically stacked on top of each other.

View Article and Find Full Text PDF

We demonstrate an all-electrically operated wavelength-tunable on demand single-photon source for the first time. The device consists of a light-emitting diode in the form of a semiconductor nanomembrane containing self-assembled quantum dots integrated onto a piezoelectric crystal. Triggered single photons are generated via injection of ultrashort electrical pulses into the diode, while their energy can be precisely tuned over a broad range by varying the voltage applied to the piezoelectric crystal.

View Article and Find Full Text PDF

The lack of structural symmetry which usually characterizes semiconductor quantum dots lifts the energetic degeneracy of the bright excitonic states and hampers severely their use as high-fidelity sources of entangled photons. We demonstrate experimentally and theoretically that it is always possible to restore the excitonic degeneracy by the simultaneous application of large strain and electric fields. This is achieved by using one external perturbation to align the polarization of the exciton emission along the axis of the second perturbation, which then erases completely the energy splitting of the states.

View Article and Find Full Text PDF

We integrate resonant-cavity light-emitting diodes containing quantum dots onto substrates with giant piezoelectric response. Via strain, the energy of the photons emitted by the diode can be precisely controlled during electrical injection over a spectral range larger than 20 meV. Simultaneously, the exciton fine-structure-splitting and the biexciton binding energy can be tuned to the values required for entangled photon generation.

View Article and Find Full Text PDF

The evolution of InAs and In(0.85)Mn(0.15)As quantum dots grown at 270 °C is studied as a function of coverage.

View Article and Find Full Text PDF