Although evidence shows depressed moods enhance risk for somatic diseases, molecular mechanisms underlying enhanced somatic susceptibility are ill-defined. Knowledge of these molecular mechanisms will inform development of treatment and prevention strategies across comorbid depressive and somatic illnesses. Existing evidence suggests that interleukin-18 (IL-18; an IL-1 family cytokine) is elevated in depression and implicated in pathophysiology underlying comorbid medical illnesses.
View Article and Find Full Text PDFEvidence in animal models suggests IL-1 family cytokines interact with central endogenous opioid neurotransmitter systems, inducing or perpetuating pathological states such as persistent pain syndromes, depression, substance use disorders, and their comorbidity. Understanding these interactions in humans is particularly relevant to understanding pathological states wherein this neurotransmitter system is implicated (ie, persistent pain, mood disorders, substance use disorders, etc). Here, we examined relationships between IL-1β, IL-1ra, and functional measures of the endogenous opioid system in 34 healthy volunteers, in the absence and presence of a standardized sustained muscular pain challenge, a psychophysical challenge with emotionally and physically stressful components.
View Article and Find Full Text PDFThe prevalence of neurodevelopmental disorders such as autism is increasing, however the etiology of these disorders is unclear and thought to involve a combination of genetic, environmental and immune factors. A recent epidemiological study found that gestational viral exposure during the first trimester increases risk of autism in offspring by twofold. In mice gestational viral exposures alter behavior of offspring, but the biological mechanisms which underpin these behavioral changes are unclear.
View Article and Find Full Text PDFInterleukin (IL)-2, a T-helper 1 (Th1) cell-derived cytokine, which potently modulates dopamine activity and neuronal excitability in mesolimbic structures, is linked with pathological outcomes (e.g., schizophrenia, depression, etc.
View Article and Find Full Text PDFBackground: Strong associations exist between tumor necrosis factor-α (TNF-α) and metabolic syndrome (MetS). Although TNF-α is associated with bipolar depression (BD), its role in atypical antipsychotic (AAP)-associated MetS in BD is unclear. Here, we investigate the potential intervening role of TNF-α in the indirect relationship between AAP treatment and MetS in BD.
View Article and Find Full Text PDFBackground: Immune cell trafficking into the CNS and other tissues plays important roles in health and disease. Rapid quantitative methods are not available that could be used to study many of the dynamic aspects of immune cell-tissue interactions.
Methods: We used pharmacokinetics and modeling to quantify and characterize the trafficking of radioactively labeled lymphocytes into brain and peripheral tissues.
Soluble cytokine receptors are normal constituents of body fluids that regulate peripheral cytokine and lymphoid activity and whose levels are increased in states of immune activation. Soluble interleukin-6 receptor (sIL-6R) levels positively correlate with disease progression in some autoimmune conditions and psychiatric disorders. Particularly strong links between levels of sIL-6R and the severity of psychotic symptoms occur in schizophrenia, raising the possibility that sIL-6R is involved in this disease.
View Article and Find Full Text PDFSoluble cytokine receptors are normal constituents of body fluids that regulate peripheral cytokine and lymphoid activity. Levels of soluble IL-2 receptors (sIL-2R) are elevated in psychiatric disorders linked with autoimmune processes, including ones in which repetitive stereotypic behaviors and motor disturbances are present. However, there is no evidence that sIL-2Rs (or any peripheral soluble receptor) induce such behavioral changes, or that they localize in relevant brain regions.
View Article and Find Full Text PDFGroup A beta-hemolytic streptococcus (GABHS) infections are implicated in neuropsychiatric disorders associated with an increased expression of repetitive stereotyped movements. Anti-streptococcus IgG presumably cross-reacts with elements on basal ganglia cells, modifies their function, and triggers symptoms. IgM may play a unique role in precipitating behavioral disturbances since variations in cortico-striatal activity occur in temporal congruity with peak IgM titers during an orchestrated immune response.
View Article and Find Full Text PDFBackground: Alterations in central neurotransmission and immune function have been documented in major depression (MDD). Central and peripheral endogenous opioids are linked to immune functioning in animal models, stress-activated, and dysregulated in MDD. We examined the relationship between μ-opioid receptor (OR)-mediated neurotransmission and a proinflammatory cytokine (interleukin [IL]-18).
View Article and Find Full Text PDFThe mechanisms underlying violence and aggression and its control remain poorly understood. Using the resident-intruder paradigm, we have discovered that resident mice with combined deletion of TNF receptor type 1 (TNF-R1) and type 2 (TNF-R2) genes show a striking absence of aggressive behavior, which includes fighting, sideways postures, and tail rattling. In parallel, resident TNF-R1 and TNF-R2 knockout mice show an increase in non-aggressive exploration of the intruder mice.
View Article and Find Full Text PDFBased upon recent findings in our laboratory that cytokines microinjected into the medial hypothalamus or periaqueductal gray (PAG) powerfully modulate defensive rage behavior in cat, the present study determined the effects of peripherally released cytokines following lipopolysaccharide (LPS) challenge upon defensive rage. The study involved initial identification of the effects of peripheral administration of LPS upon defensive rage by electrical stimulation from PAG and subsequent determination of the peripheral and central mechanisms governing this process. The results revealed significant elevation in response latencies for defensive rage from 60 to 300 min, post LPS injection, with no detectable signs of sickness behavior present at 60 min.
View Article and Find Full Text PDFViolence and aggression are major causes of death and injury, thus constituting primary public health problems throughout much of the world costing billions of dollars to society. The present review relates our understanding of the neurobiology of aggression and rage to pharmacological treatment strategies that have been utilized and those which may be applied in the future. Knowledge of the neural mechanisms governing aggression and rage is derived from studies in cat and rodents.
View Article and Find Full Text PDFObjective: The lack of an accepted standard for measuring cognitive change in schizophrenia has been a major obstacle to regulatory approval of cognition-enhancing treatments. A primary mandate of the National Institute of Mental Health's Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) initiative was to develop a consensus cognitive battery for clinical trials of cognition-enhancing treatments for schizophrenia through a broadly based scientific evaluation of measures.
Method: The MATRICS Neurocognition Committee evaluated more than 90 tests in seven cognitive domains to identify the 36 most promising measures.
Feline defensive rage, a form of aggressive behavior that occurs in response to a threat can be elicited by electrical stimulation of the medial hypothalamus or midbrain periaqueductal gray (PAG). Our laboratory has recently begun a systematic examination of the role of cytokines in the regulation of rage and aggressive behavior. It was shown that the cytokine, interleukin-2 (IL-2), differentially modulates defensive rage when microinjected into the medial hypothalamus and PAG by acting through separate neurotransmitter systems.
View Article and Find Full Text PDFRecent studies have suggested an important relationship linking cytokines, immunity and aggressive behavior. Clinical reports describe increasing levels of hostility, anger, and irritability in patients who receive cytokine immunotherapy, and there are reports of a positive correlation between cytokine levels and aggressive behavior in non-patient populations. On the basis of these reports and others describing the presence or actions of different cytokines in regions of the brain associated with aggressive behavior, our laboratory embarked upon a program of research designed to identify and characterize the role of IL-1 and IL-2 in the hypothalamus and midbrain periaqueductal gray (PAG)--two regions functionally linked through reciprocal anatomical connections--in the regulation of feline defensive rage.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
August 2006
Interleukin (IL)-2 is a potent modulator of neurotransmission and neuronal development in the mesolimbic and mesostriatal systems. It is also implicated in pathologies (including schizophrenia, Parkinson's disease, autism, cognitive disorders) that are linked with abnormalities in these systems. Since the kainate receptor plays an essential role in mesolimbic neuronal development and excitability, we examined the effects of physiologically relevant concentrations of IL-2 on kainate-activated current (I(KA)) in voltage-clamped neurons freshly isolated from the ventral tegmental area (VTA) of 3- to 14-day-old rats.
View Article and Find Full Text PDFRecently, this laboratory provided evidence that interleukin-1beta (IL-1beta), an immune and brain-derived cytokine, microinjected into the medial hypothalamus, potentiates defensive rage behavior in the cat elicited from the midbrain periaqueductal gray (PAG), and that such effects are blocked by a 5-HT2 receptor antagonist. Since this finding represents the first time that a brain cytokine has been shown to affect defensive rage behavior, the present study replicated and extended these findings by documenting the specific potentiating role played by IL-1beta Type 1 receptor (IL-1RI), and the anatomical relationship between IL-1beta and 5-HT2 receptors in the medial hypothalamus. IL-1beta (10 ng) microinjected into the medial hypothalamus induced two separate phases of facilitation, one at 60 min and another at 180 min, post-injection.
View Article and Find Full Text PDFDefensive rage behavior is a form of aggressive behavior occurring in nature in response to a threatening stimulus. It is also elicited by stimulation of the medial hypothalamus and midbrain periaqueductal gray (PAG) and mediated through specific neurotransmitter-receptor mechanisms within these regions. Since interleukin (IL)-2 modulates the release of neurotransmitters linked to aggression and rage, we sought to determine whether IL-2 microinjected into the medial hypothalamus would modulate defensive rage.
View Article and Find Full Text PDFTo stimulate the development of new drugs for the cognitive deficits of schizophrenia, the National Institute of Mental Health (NIMH) established the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) initiative. This article presents an overview of decisions from the first MATRICS consensus conference. The goals of the meeting were to 1) identify the cognitive domains that should be represented in a consensus cognitive battery and 2) prioritize key criteria for selection of tests for the battery.
View Article and Find Full Text PDFInterleukin (IL)-2, a T helper (TH)1 cell-derived glycoprotein with potent neuromodulatory effects, is implicated in the etiology and pathogenesis of various psychiatric and neurological disorders. Paralleling these findings, chronic IL-2 intravenous immunotherapy may induce similar psychopathological outcomes. The findings that acute or repeated injections of IL-2 induce motor and cognitive abnormalities in rodents are consistent with these clinical findings, and raise the possibility that IL-2 crosses the blood-brain barrier (BBB) to alter brain function.
View Article and Find Full Text PDFThe neurochemistry of aggression and rage has largely focused on the roles played by neurotransmitters and their receptor mechanisms. In contrast, little attention has been given to the possible functions of other substances. Interleukin-1beta is an immune and brain-derived cytokine that is present in the hypothalamus.
View Article and Find Full Text PDFThe effects of kindled seizures elicited from sites in the left and right temporal lobes on mitogen-induced proliferation (LPS, Con A, PHA) and induction of representative TH1 (IFN-gamma) and TH2 (IL-10, IL-4) cytokines were determined in activated rat splenocytes. With reference to cell proliferation, the changes depended on the hemispheric side and location of kindling. Kindling of the left side mediated significant increase in cell proliferation by LPS.
View Article and Find Full Text PDF