Recent advances in molecular organic photovoltaics (OPVs) have shown 10% power conversion efficiency (PCE) for single-junction cells, which put them in direct competition with PVs based on amorphous silicon. Incorporation of plasmonic nanostructures for light trapping in these thin-film devices offers an attractive solution to realize higher-efficiency OPVs with PCE>>10%. This article reviews recent progress on plasmonic-enhanced OPV devices using metallic nanoparticles, and one-dimensional (1D) and two-dimensional (2D) patterned periodic nanostructures.
View Article and Find Full Text PDFWe report a compact light collection scheme suitable for retrofitting a scanning tunneling microscope (STM) for STM-induced light emission experiments. The approach uses a pair of optical fibers with large core diameters and high numerical apertures to maximize light collection efficiency and to moderate the mechanical precision required for alignment. Bench tests indicate that efficiency reduction is almost entirely due to reflective losses at the fiber ends, while losses due to fiber misalignment have virtually been eliminated.
View Article and Find Full Text PDFThe electronic structures of two series of end-capped thiophene oligomers, one set containing the electron-deficient dimesitylboryl end-cap and one containing the electron-rich triaryl amine end-cap, have been modeled using semiempirical quantum chemical calculations and the results used to assign features in the photoemission spectra of the materials in the condensed phase. For the thiophene oligomers end-capped with the electron-deficient dimesitylboryl moieties, the energy of the occupied frontier orbitals is largely governed by pi-type orbitals of the thiophene repeat units in the oligothiophene main chain. Conversely, in oligomers end-capped with electron-rich triarylamine moieties, the occupied frontier orbital energies are largely governed by orbital states of heavily mixed character associated with thiophene pi-type systems and the low-lying nitrogen lone pairs of end capping groups.
View Article and Find Full Text PDFWe have investigated the initial stages of vacuum-deposited sexithiophene (alpha-6T) adlayer formation on Au(111) vicinal surfaces at room temperature. The in situ scanning tunneling microscopy (STM) and photoemission spectroscopy (PES) reveal a step edge-driven growth of alpha-6T on the Au(111) vicinal surfaces that first leads to the formation of an ordered monolayer, comprising two phases with the molecular major axes aligned along the step edges. The monolayer formation is then followed by the appearance of a single-phase 2D superstructure at a two-monolayer coverage.
View Article and Find Full Text PDFWe investigate the excitation energy transfer in a guest-host molecular system consisting of a pentacene derivative, namely 6,13-bis(2,6-dimethylphenyl)pentacene (DMPP), doped into tris(8-hydroxyquinolinato)aluminum (Alq(3)) using steady-state and time-resolved photoluminescence (PL) spectroscopy. The concentration dependent energy transfer rate and efficiency are calculated and analyzed in terms of the Förster resonance energy transfer model. A relatively long excitation transfer time ( approximately 0.
View Article and Find Full Text PDFThis study reports the fabrication and characterization of nanoscale organic light-emitting diodes (nano-OLEDs) based on poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene vinylene] (MEH-PPV). The nano-OLEDs were fabricated by spin casting MEH-PPV into cylindrical nanoholes lithographically patterned into silicon nitride. The electroluminescence (EL) spectrum of MEH-PPV was similar to its photoluminescence spectrum, confirming radiative decay from the same excited state.
View Article and Find Full Text PDFA series of four asymmetrically aryl-substituted 9,9'-spiro-9-silabifluorene (SSF) derivatives, 2,2'-di-tert-butyl-7,7'-diphenyl-9,9'-spiro-9-silabifluorene (PhSSF), 2,2'-di-tert-butyl-7,7'-dipyridin-2-yl-9,9'-spiro-9-silabifluorene (PySSF), 2,2'-di-tert-butyl-7,7'-dibiphenyl-4-yl-9,9'-spiro-9-silabifluorene (BPhSSF), and 2,2'-di-tert-butyl-7,7'-bis(2',2' '-bipyridin-6-yl)-9,9'-spiro-9-silabifluorene (BPySSF) are prepared through the cyclization of the corresponding 2,2'-dilithiobiphenyls with silicon tetrachloride. These novel spiro-linked silacyclopentadienes (siloles) form transparent and stable amorphous films with relatively high glass transition temperatures (T(g) = 203-228 degrees C). The absorbance spectrum of each compound shows a significant bathochromic shift relative to that of the corresponding carbon analogue as a result of the effective sigma-pi conjugation between the sigma orbital of the exocyclic Si-C bond and the pi orbital of the oligoarylene fragment.
View Article and Find Full Text PDF