Publications by authors named "Zaklina Strezoska"

Cell culture has long been essential for preclinical modeling of human development and disease. However, conventional two-dimensional (2D) cell culture fails to faithfully model the complexity found in vivo, and novel drug candidates that show promising results in 2D models often do not translate to the clinic. More recently, three-dimensional (3D) cell culture models have gained popularity owing to their greater physiological relevance to in vivo biology.

View Article and Find Full Text PDF

Gene editing technologies hold promise for enabling the next generation of adoptive cellular therapies. In conventional gene editing platforms that rely on nuclease activity, such as clustered regularly interspaced short palindromic repeats CRISPR-associated protein 9 (CRISPR-Cas9), allow efficient introduction of genetic modifications; however, these modifications occur via the generation of DNA double-strand breaks (DSBs) and can lead to unwanted genomic alterations and genotoxicity. Here, we apply a novel modular RNA aptamer-mediated Pin-point base editing platform to simultaneously introduce multiple gene knockouts and site-specific integration of a transgene in human primary T cells.

View Article and Find Full Text PDF

While CRISPR interference (CRISPRi) systems have been widely implemented in pooled lentiviral screening, there has been limited use with synthetic guide RNAs for the complex phenotypic readouts enabled by experiments in arrayed format. Here we describe a novel deactivated Cas9 fusion protein, dCas9-SALL1-SDS3, which produces greater target gene repression than first or second generation CRISPRi systems when used with chemically modified synthetic single guide RNAs (sgRNAs), while exhibiting high target specificity. We show that dCas9-SALL1-SDS3 interacts with key members of the histone deacetylase and Swi-independent three complexes, which are the endogenous functional effectors of SALL1 and SDS3.

View Article and Find Full Text PDF

The CRISPR-Cas9 system has been adapted for transcriptional activation (CRISPRa) and several second-generation CRISPRa systems (including VPR, SunTag, and SAM) have been developed to recruit different transcriptional activators to a deactivated Cas9, which is guided to a transcriptional start site via base complementarity with a target guide RNA. Multiple studies have shown the benefit of CRISPRa using plasmid or lentiviral expressed guide RNA, but the use of synthetic guide RNA has not been reported. Here we demonstrate the effective use of synthetic guide RNA for gene activation via CRISPRa.

View Article and Find Full Text PDF

MAD7 is an engineered class 2 type V-A CRISPR-Cas (Cas12a/Cpf1) system isolated from Analogous to Cas9, it is an RNA-guided nuclease with demonstrated gene editing activity in and yeast cells. Here, we report that MAD7 is capable of generating indels and fluorescent gene tagging of endogenous genes in human HCT116 and U2OS cancer cell lines, respectively. In addition, MAD7 is highly proficient in generating indels, small DNA insertions (23 bases), and larger integrations ranging from 1 to 14 kb in size in mouse and rat embryos, resulting in live-born transgenic animals.

View Article and Find Full Text PDF

While the CRISPR-Cas9 system from S. pyogenes is a powerful genome engineering tool, additional programmed nucleases would enable added flexibility in targeting space and multiplexing. Here, we characterized a CRISPR-Cas9 system from L.

View Article and Find Full Text PDF

The CRISPR-Cas9 system has been utilized for large-scale, loss-of-function screens mainly using lentiviral pooled formats and cell-survival phenotypic assays. Screening in an arrayed format expands the types of phenotypic readouts that can be used to now include high-content, morphology-based assays, and with the recent availability of synthetic crRNA libraries, new studies are emerging. Here, we use a cell cycle reporter cell line to perform an arrayed, synthetic crRNA:tracrRNA screen targeting 169 genes (>600 crRNAs) and used high content analysis (HCA) to identify genes that regulate the cell cycle.

View Article and Find Full Text PDF

The CRISPR-Cas9 system has become the most popular and efficient method for genome engineering in mammalian cells. The Streptococcus pyogenes Cas9 nuclease can function with two types of guide RNAs: the native dual crRNA and tracrRNA (crRNA:tracrRNA) or a chimeric single guide RNA (sgRNA). Although sgRNAs expressed from a DNA vector are predominant in the literature, guide RNAs can be rapidly generated by chemical synthesis and provide equivalent functionality in gene editing experiments.

View Article and Find Full Text PDF

The discovery that the bacterial clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) acquired immune system can be utilized to create double-strand breaks (DSBs) in eukaryotic genomes has resulted in the ability to create genomic changes more easily than with other genome engineering techniques. While there is significant potential for the CRISPR-Cas9 system to advance basic and applied research, several unknowns remain, including the specificity of the RNA-directed DNA cleavage by the small targeting RNA, the CRISPR RNA (crRNA). Here we describe a novel synthetic RNA approach that allows for high-throughput gene editing experiments.

View Article and Find Full Text PDF

RNA interference screening using pooled, short hairpin RNA (shRNA) is a powerful, high-throughput tool for determining the biological relevance of genes for a phenotype. Assessing an shRNA pooled screen's performance is difficult in practice; one can estimate the performance only by using reproducibility as a proxy for power or by employing a large number of validated positive and negative controls. Here, we develop an open-source software tool, the Power Decoder simulator, for generating shRNA pooled screening experiments in silico that can be used to estimate a screen's statistical power.

View Article and Find Full Text PDF

RNAi screening using pooled shRNA libraries is a valuable tool for identifying genetic regulators of biological processes. However, for a successful pooled shRNA screen, it is imperative to thoroughly optimize experimental conditions to obtain reproducible data. Here we performed viability screens with a library of ∼10,000 shRNAs at two different fold representations (100- and 500-fold at transduction) and report the reproducibility of shRNA abundance changes between screening replicates determined by microarray and next generation sequencing analyses.

View Article and Find Full Text PDF

Three questions central to understanding the initiation of DNA replication in eukaryotes are: (1) Does DNA synthesis begin at a defined place? (2) What determines replication initiation sites? (3) What regulates an origin to fire only once per cell cycle? A key player in this is the origin recognition complex (ORC), required for assembly of the pre-replication complex (pre-RC), that is converted later to the initiation complex (IC). In both yeast ARS1 and DNA puff II/9A of the metazoan fly Sciara, there is a defined start site of replication adjacent to an ORC-binding site. Although ORC has some inherent preference for certain DNA sequences, other factors may also modulate its binding to DNA.

View Article and Find Full Text PDF

Bop1 is a conserved nucleolar protein involved in rRNA processing and ribosome assembly in eukaryotes. Expression of its dominant-negative mutant Bop1 Delta in mouse cells blocks rRNA maturation and synthesis of large ribosomal subunits and induces a reversible, p53-dependent cell cycle arrest. In this study, we have conducted a deletion analysis of Bop1 and identified a new mutant, Bop1N2, that also acts as a potent inhibitor of cell cycle progression.

View Article and Find Full Text PDF