Publications by authors named "Zakhariya Manevitch"

Human apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3G (hA3G), a member of the APOBEC family, was described as an anti-HIV-1 restriction factor, deaminating reverse transcripts of the HIV-1 genome. Several types of cancer cells that express high levels of A3G, such as diffuse large B-cell lymphoma cells and glioblastomas, show enhanced cell survival after ionizing radiation and chemotherapy treatments. Previously, we showed that hA3G promotes (DNA) double-strand breaks repair in cultured cells and rescues transgenic mice from a lethal dose of ionizing radiation.

View Article and Find Full Text PDF

The currently accepted imaging methods have been a central hurdle to imaging the finer details of tumor behavior in three-dimensional (3D) ex vivo multicellular culture models. In our search for an improved way of imaging tumor behavior in its physiological-like niche, we developed a simple, efficient, and straightforward procedure using standard reagents and imaging equipment that significantly enhanced 3D imaging up to a ~200-micron depth. We tested its efficacy on pancreatic spheroids, prototypes of high-density tissues that are difficult to image.

View Article and Find Full Text PDF

Controlling the interaction of drug delivery systems (DDS) with tissues is critical for the success of therapies. Specifically in cancer, due to the high density of the tumors, tissue penetration of DDS is critical and may be challenging. In previous work we have shown that Solidified Polymer Micelles (SPMs) rapidly internalize into cells and tissues.

View Article and Find Full Text PDF

This paper uses advances in the ultrafast manipulation of light to address a general need in medicine for a clinical approach that can provide a solution to a variety of disorders requiring subsurface tissue manipulation with ultralow collateral damage. Examples are age-related macular degeneration (AMD), fungal infections, tumors surrounded by overlying tissue, cataracts, etc. Although lasers have revolutionized the use of light in clinical settings, most lasers employed in medicine cannot address such problems of depth-selective tissue manipulation.

View Article and Find Full Text PDF

Onychomycosis is caused by dermatophyte infection of the nail. Though laser energy has been shown to eliminate dermatophytes in vitro, direct laser elimination of onychomycosis is not successful due to difficulties in selectively delivering laser energy to the deeper levels of the nail plate without collateral damage. Femtosecond (fsec) infrared titanium sapphire lasers circumvent this problem by the nonlinear interactions of these lasers with biological media.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiong6k0r9phpgjft2j1fdnmau06u0rtgov3): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once