Publications by authors named "Zakaria Anfar"

The ability of olfaction to distinguish odors is based on many different properties deriving from the molecular structure, including chirality. Even if the electronic nose (e-nose) concept has been widely used in strict analogy with biological systems to implement sensor arrays that recognize and distinguish complex odor matrices, the fabrication of an enantioselective e-nose remains a challenge. This paper introduces an array of quartz microbalances (QMB) functionalized with sensitive materials made of a combination of achiral receptors and silica nanohelices grafted by chiral and achiral porphyrins.

View Article and Find Full Text PDF

A supramolecular approach based on self-assembled structures allows the formation of large structured co-assemblies based on chiral and achiral compounds with original physicochemical features. In this contribution, an achiral and hydrophobic porphyrin was co-assembled at the air-water interface with mesoscopic silica nano-helices dispersed in the water subphase of a Langmuir trough without covalent bond formation. This procedure allowed transferring the porphyrin/nano-helix co-assemblies on a solid support within a thin hybrid layer.

View Article and Find Full Text PDF

The development of chiral receptors for discriminating the configuration of the analyte of interest is increasingly urgent in view of monitoring pollution in water and waste liquids. Here, we investigate an easy protocol to immobilize the desired non-water-soluble receptors inside a water-dispersible chiral nanoplatform made of silica. This approach induces chirality in the receptors and Here, we investigate an easy protocol to immobilize the desired non-water-soluble receptors inside a water-dispersible chiral nanoplatform made of silica.

View Article and Find Full Text PDF

Hybrid nanometric helical structures formed by the molecular assemblies of dicationic gemini surfactants with tartrate counterions covered with helical silica walls interact differently with matching or mismatching enantiomers of the tartrate. The difference of the interaction is based on the cooperativity between the chiral crystalline gemini surfactant molecular organization/conformation and the rigid chiral nanospace formed by the helical silica wall.

View Article and Find Full Text PDF

In this paper, Cellana tramoserica (CT) shells were modified by copper and used as an adsorbent to remove thiabendazole (TBZ) from aqueous media. The removal efficiency of TBZ onto CT shells and modified Cellana tramoserica (CT-Cu) shells was investigated by considering the following parameters: initial pesticide concentration, solution pH, agitation time, temperature, and adsorbent mass. The experimental results show that the pseudo-first-order and Langmuir models well describe the adsorption process.

View Article and Find Full Text PDF

Attaining a synergistic merge between the performance of homogenous catalysts and the recyclability of heterogeneous catalysts remains until now a concerning issue. The main challenge is to design efficient, low-cost catalyst with outstanding reusability, facile recovery, and ease of retrieval and monitoring between the reuses. Despite the vast efforts in the development of silver nanoparticle-based catalyst for the reaction of hydrogenation of 4-nitrophenol, the aforementioned criteria are infrequently found in a chosen system.

View Article and Find Full Text PDF

Engineering of versatile binding chemistry on graphene oxide surface using nucleophilic substitution/amidation reactions for highly efficient adsorption of Cd (II), Cu (II) and Pb (II) is herein proposed. Graphene oxide (GO) was used as a precursor for covalent bonding of hexamethylenediamine (HMDA) molecules via the nucleophilic substitution/amidation reactions on epoxy (COC) and carboxyl (COOH) groups to yield hexamethylenediamine functionalized graphene oxide (GO-HMDA) with multiple binding chemistries such as oxygen and nitrogen. Afterwards, GO-HMDA was encapsulated in alginate hydrogel beads with different loadings 5, 10, 15 and 20 wt% to produce Alg/GO-HMDA hybrid adsorbents for the removal of trace heavy metal ions from aqueous solution.

View Article and Find Full Text PDF

Atomically 2D thin-layered structures, such as graphene nanosheets, graphitic carbon nitride nanosheets (g-CN), hexagonal boron nitride, and transition metal dichalcogenides are emerging as fascinating materials for a good array of domains owing to their rare physicochemical characteristics. In particular, graphitic carbon nitride has turned into a hot subject in the scientific community due to numerous qualities such as simple preparation, electrochemical properties, high adsorption capacity, good photochemical properties, thermal stability, and acid-alkali chemical resistance, . Basically, g-CN is considered as a polymeric material consisting of N and C atoms forming a tri-s-triazine network connected by planar amino groups.

View Article and Find Full Text PDF

Herein, ethylenediamine functionalized porous carbon (PC-ED/1.5) was synthesized, then characterized by various methods and finally used as a functional material for Cu(ii) and Pb(ii) ion removal from water. XPS revealed the presence of numerous functionalities within the surface of PC including -NH and C-N-C groups.

View Article and Find Full Text PDF

Iron oxide/biochar (FeO/biochar) was prepared by green synthesis a microwave to evaluate ultrasound-assisted adsorption capacity of Nonsteroidal Anti-inflammatory Drugs (NSAIDs) (salicylic acid, naproxen, and ketoprofen) from the water. Several techniques of characterization, including, Fourier transform infrared spectrometry, scanning electron microscopy, EDS analysis, N adsorption-desorption, X-ray diffraction, and Raman spectrometry were applied. The adsorption of NSAIDs onto FeO/biochar was performed using an ultrasonic bath.

View Article and Find Full Text PDF

This work goes inside the understanding of organic pollutants adsorption mechanism over network alginate hydrogel beads based on immobilized bio-sourced PC@FeO-NPs (PC@FeO-NPs@Alginate) and highlights its high extent mass recovery in aqueous media. The samples were successfully synthesized, we previously developed porous carbon (PC), which, was used to elaborate PC@FeO-NPs via simple in situ coprecipitation (PC@ FeO-NPs), which was encapsulated by alginate-Ca via the blend crosslinking method. The structural, textural, chemical and morphological proprieties of as prepared materials were studied by XRD, FTIR, Raman spectroscopy, nitrogen adsorption-desorption, XPS, SEM and TEM.

View Article and Find Full Text PDF

Valorization of agri-food organic waste in order to reach zero waste using cleaner methods is still a challenge. Therefore, both anaerobic co-digestion (ACD) (biological process) and adsorption (physicochemical process) were used in combination for this objective. ACD allows the activation of biodegradable organic matter by microbial action and produces a digestate (co-product).

View Article and Find Full Text PDF

The overall goal of this work was to activate agri-food wastes by microbial action, which makes it possible to produce bio-digestate and energy (methane). The resulting bio-digestate could be transformed to porous carbon (PC), which was used for the preparation of core-shell particles with alginate (bio-polymer) and a calcium ion layer. Furthermore, surface charge measurements showed electrostatic attractions occurring between the alginate, calcium (Ca) ions and the PC, hence leading to the formation of core (PC)-shell (alginate-calcium ions) particles.

View Article and Find Full Text PDF

Carbon microspheres were synthesized under nitrogen flow from walnut shells (WS) and then used as an adsorbent for the removal of Pb (II), Cu(II), Cr(III) and Cd(II) metals. The prepared material was characterized using X-ray photoelectron spectroscopy, scanning electron microscopy, Brounauer-emett-teller surface, Fourier transform infrared and Raman spectroscopy. SEM micrographs showed homogenous sphere-like structure with an average diameter of 4.

View Article and Find Full Text PDF

In this work, bentonite clay (BC) calcined at 500 °C was used as an adsorbent (BC-500) for the adsorption of Pb and -nitrophenol. The ability of BC-500 for the removal of Pb and -nitrophenol has been investigated. The adsorption studies tailored well the pseudo-first-order and the Langmuir model for Pb and -nitrophenol both.

View Article and Find Full Text PDF

This paper reports the removal of paraquat from an aqueous solution using prepared carbonated jujube seed (JS/HSO-700). JS/HSO-700 was characterized by XPS, TGA, FTIR, N physisorption, SEM, and Raman techniques. FTIR revealed the presence of active species on the JS/HSO-700 surface.

View Article and Find Full Text PDF