The development of flexible, cost-effective, highly efficient, and reliable humidity monitoring sensors is in high demand owing to their wide-range of applications in industrial domains. In this study, a humidity sensor was fabricated based on graphite/zinc oxide nanoparticle (G/ZnO-NP)-coated cellulose paper. A bar device was designed using computer software, and its sketch was printed on cellulose paper, with graphite bars then added using the pencil-drawing method, and then ZnO-NP paste was coated on the graphite patterns.
View Article and Find Full Text PDFHalf-metallic semiconductors typically exhibit 100% spin polarization at the Fermi level which makes them desired materials for spintronic applications. In this study, we reported a half-metallic ferromagnetic nature in vacancy-ordered double perovskites TlWX (X = Cl and Br). The magnetic, electronic, and thermoelectric properties of the material are studied by the use of density functional theory (DFT).
View Article and Find Full Text PDFChemical sensors have a wide range of applications in a variety of industries, particularly for sensing volatile organic compounds. This work demonstrates the fabrication of a chemical sensor based on graphene deposited on Cu foils using low-pressure chemical vapor deposition, following its transfer on oxidized silicon through a wet etching method. Scanning electron microscopy, Raman spectroscopy and UV-vis spectroscopy of the transferred graphene were performed.
View Article and Find Full Text PDFGraphene as a material for optoelectronic design applications has been significantly restricted owing to zero bandgap and non-compatible handling procedures compared with regular microelectronic ones. In this work, nitrogen-doped reduced graphene oxide (N-rGO) with tunable optical bandgap and enhanced electrical conductivity was synthesized via a microwave-assisted hydrothermal method. The properties of the synthesized N-rGO were determined using XPS, FTIR and Raman spectroscopy, UV/vis, as well as FESEM techniques.
View Article and Find Full Text PDFGraphene devices have been widely explored for photonic applications, as they serve as promising candidates for controlling light interactions resulting in extreme confinement and tunability of graphene plasmons. The ubiquitous presence of surface crumples in graphene, very less is known on how the crumples in graphene can affect surface plasmon resonance and its absorption properties. In this article, a novel approach based on the crumpled graphene is investigated to realize broadband tunability of plasmonic resonance through the mechanical reconfiguration of crumpled graphene resonators.
View Article and Find Full Text PDFIn recent years, the field of nanophotonics has progressively developed. However, constant demand for the development of new light source still exists at the nanometric scale. Light emissions from graphene-based active materials can provide a leading platform for the development of two dimensional (2-D), flexible, thin, and robust light-emitting sources.
View Article and Find Full Text PDFGraphene and its hybrids are being employed as potential materials in light-sensing devices due to their high optical and electronic properties. However, the absence of a bandgap in graphene limits the realization of devices with high performance. In this work, a boron-doped reduced graphene oxide (B-rGO) is proposed to overcome the above problems.
View Article and Find Full Text PDFPlasmonic antennas are attractive optical components of the optoelectronic devices, operating in the far-infrared regime for sensing and imaging applications. However, low optical absorption hinders its potential applications, and their performance is limited due to fixed resonance frequency. In this article, a novel gate tunable graphene-metal hybrid plasmonic antenna with stacking configuration is proposed and investigated to achieve tunable performance over a broad range of frequencies with enhanced absorption characteristics.
View Article and Find Full Text PDFExceptional advancement has been made in the development of graphene optical nanoantennas. They are incorporated with optoelectronic devices for plasmonics application and have been an active research area across the globe. The interest in graphene plasmonic devices is driven by the different applications they have empowered, such as ultrafast nanodevices, photodetection, energy harvesting, biosensing, biomedical imaging and high-speed terahertz communications.
View Article and Find Full Text PDFOrganic electrode materials have secured a distinctive place among the auspicious choices for modern energy storage systems due to their resource sustainability and environmental friendliness. Herein, a novel all-organic electrode-based sodium ion full battery is demonstrated using 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTCDA) as raw material for the assembly of positive and negative electrodes. Both the electrodes exhibit excellent cycling stability and rate performance.
View Article and Find Full Text PDFNitrogen doping can provide a large number of active sites for lithium-ion storage, thus can yield a higher capacity for lithium-ion batteries. However, most of the reported N-doped graphene-based materials have low nitrogen content (<10 wt%) as the introduction of nitrogen atoms prefer to be produced at edges and defects in the graphene lattices. Owing to the formation of edges and defects, the doped states or active sites can easily be located and nitrogen contents can be determined precisely.
View Article and Find Full Text PDFTwo hundred ten samples of selected vegetables (okra, pumpkin, tomato, potato, eggplant, spinach, and cabbage) from Faisalabad, Pakistan, were analyzed for the analysis of heavy metals: cadmium (Cd), lead (Pb), arsenic (As), and mercury (Hg). Inductively coupled plasma optical emission spectrometry was used for the analysis of heavy metals. The mean levels of Cd, Pb, As, and Hg were 0.
View Article and Find Full Text PDFWe irradiate the single crystal boron-doped silicon (Si) at various laser fluences with 100 laser shots in ambient air at room temperature using an Nd:YAG laser and investigate its surface morphology and optical properties. The optical microscopy gives evidence of the formation of a crater and reveals that the heat-affected zone and melted area are increased with increase in laser fluence from 1.1 to 15.
View Article and Find Full Text PDFChemical vapor deposition (CVD) growth of high-quality graphene has emerged as the most promising technique in terms of its integrated manufacturing. However, there lacks a controllable growth method for producing high-quality and a large-quantity graphene films, simultaneously, at a fast growth rate, regardless of roll-to-roll (R2R) or batch-to-batch (B2B) methods. Here, a stationary-atmospheric-pressure CVD (SAPCVD) system based on thermal molecular movement, which enables fast B2B growth of continuous and uniform graphene films on tens of stacked Cu(111) foils, with a growth rate of 1.
View Article and Find Full Text PDFThe high-quality graphene film can be grown on single-crystal Cu substrate by seamlessly stitching the aligned graphene domains. The roles of O and H have been intensively studied in the graphene growth kinetics, including lowering the nucleation sites and tailoring the domain structures. However, how the O and H influence Cu orientations during recrystallization prior to growing graphene, still remains unclear.
View Article and Find Full Text PDFThe increasing demand of electronic devices for physical motion detection has encouraged the development of highly elastic strain sensors. Especially, to capture wide-range physical movements, supremely stretchable and wide-range strain sensors are required. Here, a novel transparent, bendable, stretchable, and wide-range strain sensor based on a sandwich-like stacked graphene and Ag-nanowires hybrid structures is reported.
View Article and Find Full Text PDF