Publications by authors named "Zak Hughes"

Background: Since 2014, several clinical studies focusing on centronuclear myopathies have been conducted, including a prospective natural history study, a gene transfer clinical trial and a clinical trial using an antisense oligonucleotide. Dedicated patient organizations have played an important role in this process. The experience of members of these organizations, either as a study participant, parent or as a patient organization member communicating with the sponsors are potentially very informative for future trial design.

View Article and Find Full Text PDF

The design of a clinical trial for a rare disease can be challenging. An optimal study design is required to effectively study the clinical outcomes for possible therapies for these types of disorders. Understanding the study participants' experiences as well as barriers and facilitators of participation are important to optimize future research and to inform clinical trial management.

View Article and Find Full Text PDF

Ligands like alkanethiol ( dodecanethiol, hexadecanethiol, ) and polymers ( poly(vinyl pyrrolidone), polyethylene glycol-thiol) capped to the gold nanoparticles (AuNPs) are widely used in biomedical field as drug carriers and as promising materials for probing and manipulating cellular processes. Ligand functionalised AuNPs are known to interact with the pulmonary surfactant (PS) monolayer once reaching the alveolar region. Therefore, it is crucial to understand the interaction between AuNPs and PS monolayers.

View Article and Find Full Text PDF

Peptide sequence engineering can potentially deliver materials-selective binding capabilities, which would be highly attractive in numerous biotic and abiotic nanomaterials applications. However, the number of known materials-selective peptide sequences is small, and identification of new sequences is laborious and haphazard. Previous attempts have sought to use machine learning and other informatics approaches that rely on existing data sets to accelerate the discovery of materials-selective peptides, but too few materials-selective sequences are known to enable reliable prediction.

View Article and Find Full Text PDF

Colloidal nanoparticles, such as gold nanoparticles (AuNPs), are promising materials for the delivery of hydrophilic drugs via the pulmonary route. The inhaled nanoparticle drug carriers primarily deposit in lung alveoli and interact with the alveolar surface known as lung surfactants. Therefore, it is vital to understand the interactions of nanocarriers with the surfactant layer.

View Article and Find Full Text PDF

Lung surfactant (LS) monolayers that continuously expand and compress during breathing cycles, act as the first line barrier for inhaled nanoparticles. It is known that nanoparticles which adsorb to the surface of the surfactant layer facilitate the rearrangement of lipids and peptides at various stages of the breathing cycle. However, the structural mechanisms for this ability of the lipid rearrangement are not yet fully understood.

View Article and Find Full Text PDF

Key to progress in molecular simulation is the development of advanced models that go beyond the limitations of traditional force fields that employ a fixed, point charge-based description of electrostatics. Taking water as an example system, the FFLUX framework is shown capable of producing models that are flexible, polarizable and have a multipolar description of the electrostatics. The kriging machine-learning methods used in FFLUX are able to reproduce the intramolecular potential energy surface and multipole moments of a single water molecule with chemical accuracy using as few as 50 training configurations.

View Article and Find Full Text PDF

Inhaled nanoparticles (NPs) are experienced by the first biological barrier inside the alveolus known as lung surfactant (LS), a surface tension reducing agent, consisting of phospholipids and proteins in the form of the monolayer at the air-water interface. The monolayer surface tension is continuously regulated by the alveolus compression and expansion and protects the alveoli from collapsing. Inhaled NPs can reach deep into the lungs and interfere with the biophysical properties of the lung components.

View Article and Find Full Text PDF

A new type of model, FFLUX, to describe the interaction between atoms has been developed as an alternative to traditional force fields. FFLUX models are constructed by applying the kriging machine learning method to the topological energy partitioning method, interacting quantum atoms (IQA). The effect of varying parameters in the construction of the FFLUX models is analyzed, with the most dominant effects found to be the structure of the molecule and the number of conformations used to build the model.

View Article and Find Full Text PDF

Here, we present an in-depth analysis of structural factors that modulate peptide-capped nanoparticle catalytic activity via optically driven structural reconfiguration of the biointerface present at the particle surface. Six different sets of peptide-capped Au nanoparticles were prepared, in which an azobenzene photoswitch was incorporated into one of two well-studied peptide sequences with known affinity for Au, each at one of three different positions: the N- or C-terminus or mid-sequence. Changes in the photoswitch isomerization state induce a reversible structural change in the surface-bound peptide, which modulates the catalytic activity of the material.

View Article and Find Full Text PDF

How the presence of Ca ions at the aqueous TiO interface influences the binding modes of two experimentally identified titania-binding peptides, Ti-1 and Ti-2, is investigated using replica exchange with solute tempering molecular dynamics simulations. The findings are compared with available experimental data, and the results are contrasted with those obtained under NaCl solution conditions. For Ti-1, Ca ions enhance the adsorption of the negatively charged Asp8 residue in this sequence to the negatively charged surface, via Asp–Ca–TiO bridging.

View Article and Find Full Text PDF

The peptide sequence GrBP5, IMVTESSDYSSY, is found experimentally to bind to graphene, and ex situ atomic force microscopy indicates the formation of an ordered over-layer on graphite. However, under aqueous conditions neither the molecular conformations of the adsorbed peptide chains, nor the molecular-level spatial ordering of the over-layer, has been directly resolved. Here, we use advanced molecular dynamics simulations of GrBP5, and related mutant sequences, to elucidate the adsorbed structures of both the peptide and the adsorbed peptide over-layer at the aqueous graphene interface.

View Article and Find Full Text PDF

We report on the predicted structural disruption of an adenosine-binding DNA aptamer adsorbed via noncovalent interactions on aqueous graphene. The use of surface-adsorbed biorecognition elements on device substrates is needed for integration in nanofluidic sensing platforms. Upon analyte binding, the conformational change in the adsorbed aptamer may perturb the surface properties, which is essential for the signal generation mechanism in the sensor.

View Article and Find Full Text PDF

We combine single molecule force spectroscopy measurements with all-atom metadynamics simulations to investigate the cross-materials binding strength trends of DNA fragments adsorbed at the aqueous graphite C(0001) and Au(111) interfaces. Our simulations predict this adsorption at the level of the nucleobase, nucleoside, and nucleotide. We find that despite challenges in making clear, careful connections between the experimental and simulation data, reasonable consistency between the binding trends between the two approaches and two substrates was evident.

View Article and Find Full Text PDF

The adsorption of three homo-tripeptides, HHH, YYY, and SSS, at the aqueous Au interface is investigated, using molecular dynamics simulations. We find that consideration of surface facet effects, relevant to experimental conditions, opens up new questions regarding interpretations of current experimental findings. Our well-tempered metadynamics simulations predict the rank ordering of the tripeptide binding affinities at aqueous Au(111) to be YYY > HHH > SSS.

View Article and Find Full Text PDF

Peptide-mediated synthesis and assembly of nanostructures opens new routes to functional inorganic/organic hybrid materials. However, understanding of the many factors that influence the interaction of biomolecules, specifically peptides, with metal surfaces remains limited. Understanding of the relationship between peptide sequence and resulting binding affinity and configurations would allow predictive design of peptides to achieve desired peptide/metal interface characteristics.

View Article and Find Full Text PDF

The removal or structural disruption of crystallised lipid is a pivotal but energy-intensive step in a wide range of industrial and biological processes. Strategies to disrupt the structure of crystallised lipid in aqueous solution at lower temperatures are much needed, where nanoparticle-based strategies show enormous promise. Using the aqueous tristearin bilayer as a model for crystallised lipid, we demonstrate that the synergistic use of surfactant and detonation nanodiamonds can depress the onset temperature at which disruption of the crystallised lipid structure occurs.

View Article and Find Full Text PDF

Bimetallic nanoparticles are of immense scientific and technological interest given the synergistic properties observed when two different metallic species are mixed at the nanoscale. This is particularly prevalent in catalysis, where bimetallic nanoparticles often exhibit improved catalytic activity and durability over their monometallic counterparts. Yet despite intense research efforts, little is understood regarding how to optimize bimetallic surface composition and structure synthetically using rational design principles.

View Article and Find Full Text PDF

A major barrier to the systematic improvement of biomimetic peptide-mediated strategies for the controlled growth of inorganic nanomaterials in environmentally benign conditions lies in the lack of clear conceptual connections between the sequence of the peptide and its surface binding affinity, with binding being facilitated by noncovalent interactions. Peptide conformation, both in the adsorbed and in the nonadsorbed state, is the key relationship that connects peptide-materials binding with peptide sequence. Here, we combine experimental peptide-titania binding characterization with state-of-the-art conformational sampling via molecular simulations to elucidate these structure/binding relationships for two very different titania-binding peptide sequences.

View Article and Find Full Text PDF

The operation of many nanostructured biomolecular sensors and catalysts critically hinges on the manipulation of non-covalent adsorption of biomolecules on unfunctionalised noble-metal nanoparticles (NMNPs). Molecular-level structural details of the aqueous biomolecule/NMNP interface are pivotal to the successful realisation of these technologies, but such experimental data are currently scarce and challenging to obtain. Molecular simulations can generate these details, but are limited by the assumption of non-preferential adsorption to NMNP features.

View Article and Find Full Text PDF

Photoresponsive molecules that incorporate peptides capable of material-specific recognition provide a basis for biomolecule-mediated control of the nucleation, growth, organization, and activation of hybrid inorganic/organic nanostructures. These hybrid molecules interact with the inorganic surface through multiple noncovalent interactions which allow reconfiguration in response to optical stimuli. Here, we quantify the binding of azobenzene-peptide conjugates that exhibit optically triggered cis-trans isomerization on Ag surfaces and compare to their behavior on Au.

View Article and Find Full Text PDF

Peptide-enabled nanoparticle (NP) synthesis routes can create and/or assemble functional nanomaterials under environmentally friendly conditions, with properties dictated by complex interactions at the biotic/abiotic interface. Manipulation of this interface through sequence modification can provide the capability for material properties to be tailored to create enhanced materials for energy, catalysis, and sensing applications. Fully realizing the potential of these materials requires a comprehensive understanding of sequence-dependent structure/function relationships that is presently lacking.

View Article and Find Full Text PDF

Investigation of the non-covalent interaction of biomolecules with aqueous graphene interfaces is a rapidly expanding area. However, reliable exploitation of these interfaces in many applications requires that the links between the sequence and binding of the adsorbed peptide structures be clearly established. Molecular dynamics (MD) simulations can play a key role in elucidating the conformational ensemble of peptides adsorbed at graphene interfaces, helping to elucidate these rules in partnership with experimental characterisation.

View Article and Find Full Text PDF

Research in graphene-based energy materials is a rapidly growing area. Many graphene-based energy applications involve interfacial processes. To enable advances in the design of these energy materials, such that their operation, economy, efficiency and durability is at least comparable with fossil-fuel based alternatives, connections between the molecular-scale structure and function of these interfaces are needed.

View Article and Find Full Text PDF

Despite the extensive utilization of biomolecule-titania interfaces, biomolecular recognition and interactions at the aqueous titania interface remain far from being fully understood. Here, atomistic molecular dynamics simulations, in partnership with metadynamics, are used to calculate the free energy of adsorption of different amino acid side chain analogues at the negatively-charged aqueous rutile TiO2 (110) interface, under conditions corresponding with neutral pH. Our calculations predict that charged amino acid analogues have a relatively high affinity to the titania surface, with the arginine analogue predicted to be the strongest binder.

View Article and Find Full Text PDF