Antimony-based alloys have appealed to an ever-increasing interest for potassium ion storage due to their high theoretical capacity and safe voltage. However, sluggish kinetics and the large radius of K lead to limited rate performance and severe capacity fading. In this Letter, highly dispersed antimony-bismuth alloy nanoparticles confined in carbon fibers are fabricated through an electrospinning technology followed by heat treatment.
View Article and Find Full Text PDFThe front cover artwork is provided by Dr. Ping Nie and Prof. Limin Chang at Jilin Normal University.
View Article and Find Full Text PDFPractical applications of silicon-based anodes in lithium ion batteries have attracted unprecedented attentions due to the merits of extraordinary energy density, high safety and low cost. Nevertheless, the inevitable huge volume change upon lithiation and delithiation brings about silicon electrode integrity damage and fast capacity fading, hampering the large-scale application. Herein, a novel one-dimensional tubular silicon-nitrogen doped carbon composite (Si@NC) with a core-shell structure has been fabricated using silicon magnesium alloy and polydopamine as a template and precursor.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2021
Lithium ion batteries are attracting ever increasing attention due to their advantages of high energy/ power density, environmental friendly, lifetime and low cost. As a star in the field of materials and energy, perovskites have received extensive attention due to their attracting physical and chemical properties. Herein, CaMnO, one material from the perovskite family is introduced as a novel anode material for lithium ion batteries, and its electrochemical performance at different temperatures is systematically investigated.
View Article and Find Full Text PDFAs a new type of capacitor-battery hybrid energy storage device, metal-ion capacitors have attracted widespread attention because of their high-power density while ensuring energy density and long lifespan. Potassium-ion capacitors (KICs) featuring the merits of abundant potassium resources, lower standard electrode potential, and low cost have been considered as potential alternatives to lithium-/sodium-ion capacitors. However, KICs still face issues including unsatisfactory reaction kinetics, low energy density, and poor lifetime owing to the large radius of the potassium ion.
View Article and Find Full Text PDFA low-cost and scalable method has been developed to synthesize Fe-decorated N-rich carbon electrocatalysts for the oxygen reduction reaction (ORR) based on pyrolysis of metal carbonyls containing metal-organic frameworks (MOFs). Such a method simultaneously optimizes the Fe-related active sites and the porous structure of the catalysts. Accordingly, the best-performing Fe-NC-900-M catalyst shows excellent ORR activity with a half-wave potential of 0.
View Article and Find Full Text PDFSilicon holds great promise as an anode material for lithium-ion batteries with higher energy density; its implication, however, is limited by rapid capacity fading. A catalytic growth of graphene cages on composite particles of magnesium oxide and silicon, which are made by magnesiothermic reduction reaction of silica particles, is reported herein. Catalyzed by the magnesium oxide, graphene cages can be conformally grown onto the composite particles, leading to the formation of hollow graphene-encapsulated Si particles.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2017
Alternative battery systems based on the chemistry of sodium are being considered to offer sustainability and cost-effectiveness. Herein, a simple and new method is demonstrated to enable nickel hexacyanoferrate (NiHCF) Prussian blue analogues (PBA) nanocrystals to be an excellent host for sodium ion storage by functionalization with redox guest molecule. The method is achieved by using NiHCF PBA powders infiltrated with the 7,7,8,8-tetracyanoquinododimethane (TCNQ) solution.
View Article and Find Full Text PDFSodium-ion capacitors can potentially combine the virtues of high power capability of conventional electrochemical capacitors and high energy density of batteries. However, the lack of high-performance electrode materials has been the major challenge of sodium-based energy storage devices. In this work, we report a microwave-assisted synthesis of single-crystal-like anatase TiO mesocages anchored on graphene as a sodium storage material.
View Article and Find Full Text PDFLithium-sulfur batteries, notable for high theoretical energy density, environmental benignity, and low cost, hold great potential for next-generation energy storage. Polysulfides, the intermediates generated during cycling, may shuttle between electrodes, compromising the energy density and cycling life. We report herein a class of regenerative polysulfide-scavenging layers (RSL), which effectively immobilize and regenerate polysulfides, especially for electrodes with high sulfur loadings (e.
View Article and Find Full Text PDFProtein channels in biologic systems can effectively transport ions such as proton (H(+)), sodium (Na(+)), and calcium (Ca(+)) ions. However, none of such channels is able to conduct electrons. Inspired by the biologic proton channels, we report a novel hierarchical nanostructured hydrous hexagonal WO3 (h-WO3) which can conduct both protons and electrons.
View Article and Find Full Text PDFMesoporous nanocomposites composed of crystalline and amorphous oxides network were successfully synthesized by a continuous aerosol spray process; electrodes made from such nanocomposites with a thin-layer of protective oxide coating exhibit high capacity and long cycling life for lithium storage.
View Article and Find Full Text PDF