Embryonic muscle fiber formation determines post-birth muscle fiber totals. The previous research shows SYISL knockout significantly increases muscle fiber numbers and mass in mice, but the mechanism remains unclear. This study confirms that the SYISL gene, maternal gut microbiota, and their interaction significantly affect the number of muscle fibers in mouse embryos through distinct mechanisms, as SYISL knockout alters maternal gut microbiota composition and boosts butyrate levels in embryonic serum.
View Article and Find Full Text PDFEchinococcus granulosus (Eg) and Echinococcus multilocularis (Em) are the two most widely prevalent types of echinococcosis. Several diagnostic methods have been developed for detecting Eg and Em. However, some limitations, such as being time-consuming, needing expensive instruments, or exhibiting low sensitivity, make these methods unsuitable for on-site detection.
View Article and Find Full Text PDFOur previous studies showed that SYISL is a negative regulator of muscle growth and regeneration in mice, pigs and humans. SYISL knockout resulted in an increase in the density of muscle fibers and muscle growth. However, it is unclear whether there are natural mutations in pig SYNPO2 intron sense-overlapping lncRNA (pSYISL) that affect the expression of pSYISL and muscle growth traits.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
June 2023
Background: Abdominal aortic aneurysm (AAA) is a potentially lethal disease that lacks pharmacological treatment. Degradation of extracellular matrix proteins, especially elastin laminae, is the hallmark for AAA development. DOCK2 (dedicator of cytokinesis 2) has shown proinflammatory effects in several inflammatory diseases and acts as a novel mediator for vascular remodeling.
View Article and Find Full Text PDFThe proportions of the various muscle fiber types are important in the regulation of skeletal muscle metabolism, as well as animal meat production. Four-and-a-half LIM domain protein 3 (FHL3) is highly expressed in fast glycolytic muscle fibers and differentially regulates the expression of myosin heavy chain (MyHC) isoforms at the cellular level. Whether FHL3 regulates the transformation of muscle fiber types in vivo and the regulatory mechanism is unclear.
View Article and Find Full Text PDFLong noncoding RNAs (lncRNAs) play important roles in the spatial and temporal regulation of muscle development and regeneration. Nevertheless, the determination of their biological functions and mechanisms underlying muscle regeneration remains challenging. Here, we identified a lncRNA named lncMREF (lncRNA muscle regeneration enhancement factor) as a conserved positive regulator of muscle regeneration among mice, pigs and humans.
View Article and Find Full Text PDFBackground: Dissection of the regulatory pathways that control skeletal muscle development and atrophy is important for the treatment of muscle wasting. Long noncoding RNA (lncRNA) play important roles in various stages of muscle development. We previously reported that Synaptopodin-2 (SYNPO2) intron sense-overlapping lncRNA (SYISL) regulates myogenesis through an interaction with enhancer of zeste homologue 2 (EZH2).
View Article and Find Full Text PDFlncMGPF is a novel positive regulator of myogenic differentiation, muscle growth and regeneration in mouse, pig, and human. But whether natural mutations within gene regulate animal meat production traits is unclear. In this study, ten single nucleotide polymorphisms (SNPs) of pig () gene were identified among commercial pig breeds and Chinese local pig breeds.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2021
Skeletal muscle is a highly heterogeneous tissue that plays a crucial role in mammalian metabolism and motion maintenance. Myogenesis is a complex biological process that includes embryonic and postnatal development, which is regulated by specific signaling pathways and transcription factors. Various non-coding RNAs (ncRNAs) account for the majority of total RNA in cells and have an important regulatory role in myogenesis.
View Article and Find Full Text PDFEnhancer of zeste homolog 2 (EZH2) is the catalytic subunit of polycomb repressive complex 2 and contains a SET domain that catalyzes histone H3 trimethylation on lysine 27 (H3K27me3) to generate an epigenetic silencing mark. EZH2 interacts with transcription factors or RNA transcripts to perform its function. In this study, we applied RNA immunoprecipitation sequencing and long intergenic non-coding RNA (lincRNA) sequencing methods to identify EZH2-binding lincRNAs.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
December 2020
Background: Long non-coding RNAs (lncRNAs) play critical regulatory roles in diverse biological processes and diseases. While a large number of lncRNAs have been identified in skeletal muscles until now, their function and underlying mechanisms in skeletal myogenesis remain largely unclear.
Methods: We characterized a novel functional lncRNA designated lncMGPF (lncRNA muscle growth promoting factor) using RACE, Northern blot, fluorescence in situ hybridization and quantitative real-time PCR.
The transmission of T-2 toxin and its metabolites into the edible tissues of poultry has potential effects on human health. The bile acid and xenobiotic system composes an intricate physiological network of chemoprotective and transporter-related functions, which ensures the detoxification and removal of harmful xenobiotic and endobiotic compounds from the body. This study revealed that cholic acid (CA), as one of the bile acids, promoted the metabolism of T-2 toxin in vivo by inducing the xenobiotic metabolism enzymes expression, thereby increasing the stress resistance and attenuating the oxidative stress.
View Article and Find Full Text PDFMyogenesis is a complex biological process, and understanding the regulatory network of skeletal myogenesis will contribute to the treatment of human muscle related diseases and improvement of agricultural animal meat production. Long noncoding RNAs (lncRNAs) serve as regulators in gene expression networks, and participate in various biological processes. Recent studies have identified functional lncRNAs involved in skeletal muscle development and disease.
View Article and Find Full Text PDFNeat1 is widely expressed in many tissues and cells and exerts pro-proliferation effects on many cancer cells. However, little is known about the function of Neat1 in myogenesis. Here we characterized the roles of Neat1 in muscle cell formation and muscle regeneration.
View Article and Find Full Text PDFIn order to better understand the key regulatory mechanisms of PGC1α in muscle fiber type transition, the RNA-seq was used to compare the change of gene expression in gastrocnemius muscles between wild type pigs and transgenic pigs with overexpression of PGC1α gene in muscle. 371 differentially expressed genes (P ≤ 0.05 and Ratio ≥ 2), including 184 up-regulated genes and 187 down-regulated genes, were identified.
View Article and Find Full Text PDFMuscle fiber formation is a complex process and subject to fine regulation of a variety of protein-coding genes and non-coding RNA. In this study, we identified a nuclear protein-coding gene ANKRD23 which was highly expressed in muscle. Quantitative real-time PCR, western blotting and immunofluorescence were used to detect the expression change of myoblast differentiation marker genes after knockdown and overexpression of ANKRD23.
View Article and Find Full Text PDFObesity is the major risk factor for type 2 diabetes, cardiovascular disorders, and many other diseases. Adipose tissue inflammation is frequently associated with obesity and contributes to the morbidity and mortality. Dedicator of cytokinesis 2 (DOCK2) is involved in several inflammatory diseases, but its role in obesity remains unknown.
View Article and Find Full Text PDFMyogenic differentiation factor (MyoD) is a master transcription factor in muscle development and differentiation. Although several long non-coding RNAs (lncRNAs) linked to MyoD have been found to influence muscle development, the functions of many lncRNAs have not been explored. Here we utilized lncRNA and mRNA microarray analysis to identify potential lncRNAs regulated by MyoD in muscle cells.
View Article and Find Full Text PDFPeroxisome proliferator-activated receptor delta (PPARD) is a key regulator of lipid metabolism, insulin sensitivity, cell proliferation and differentiation. In this study, we identified two Single Nucleotide Polymorphisms (SNPs, g.1015 A>G and g.
View Article and Find Full Text PDFIn skeletal muscle, muscle fiber types are defined by four adult myosin heavy chain (MyHC) isoforms. Four and a half LIM domain protein 3 (FHL3) regulates myoblasts differentiation and gene expression by acting as a transcriptional co-activator or co-repressor. However, how FHL3 regulates MyHC expression is currently not clear.
View Article and Find Full Text PDFIn order to better understand and elucidate the major determinants of red and white muscle phenotypic properties, the global gene expression profiling was performed in white (longissimus doris) and red (soleus) skeletal muscle of Chinese Meishan pigs using the Affymetrix Porcine Genechip. 550 transcripts at least 1.5-fold difference were identified at p < 0.
View Article and Find Full Text PDFTroponin I (TnI) is a family of three muscle-specific myofibrillar proteins involved in calcium-sensitive regulation of contraction in cardiac and skeletal muscle. In this study, the full-length cDNA and genomic sequence of three genes of porcine TnI family were cloned and sequenced. The full-length cDNA of TNNI1, TNNI2, and TNNI3 genes were 989 bp, 734 bp, and 831 bp in length, which contained an open reading frame of 564, 549, and 636 nucleotides, respectively.
View Article and Find Full Text PDFActa Biochim Biophys Sin (Shanghai)
November 2007
Tumor necrosis factor receptor-associated factor 2 (TRAF2) is a crucial component of almost the entire tumor necrosis factor receptor superfamily signaling pathway. In the present study, a TRAF2 gene has been cloned from grass carp (Ctenopharyngodon idella) by reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends. The full-length cDNA is 3162 bp, including a 60 bp 5' untranslated region (UTR), a 1611 bp open reading frame, and a 1491 bp 3' UTR.
View Article and Find Full Text PDF