Publications by authors named "Zaitian Cheng"

The performance of organic field-effect transistors (OFETs) is highly dependent on the dielectric-semiconductor interface, especially in ion-gel-gated OFETs, where a significantly high carrier density is induced at the interface at a low gate voltage. This study investigates how altering the alkyl side chain length of donor-acceptor (D-A) copolymers impacts the electrical performance of ion-gel-gated OFETs. Two difluorobenzothiadiazole-based D-A copolymers, PffBT4T-2OD and PffBT4T-2DT, are compared, where the latter features longer alkyl side chains.

View Article and Find Full Text PDF

The π-extension of carbon nanorings towards ultrashort carbon nanotubes (CNTs) is a great challenge for synthetic chemists. Herein, we report the synthesis, characterization, and properties of a nanographene-embedded carbon nanoring (NECR) by a direct zipper method. In this approach, a long linear phenyl chain is fused onto the CPP backbone by a simple Scholl reaction, similar to zipping two pieces of fabric together.

View Article and Find Full Text PDF

Herein, we report the synthesis of a novel intramolecular donor-acceptor (D-A) system ([12]CPP-8TPAOMe) based on cycloparaphenylenes (CPPs) grafted with eight di(4-methoxyphenyl)amino groups (TPAOMe) as donors. Compared to [12]CPP, D-A nanohoop exhibited significant changes in physical properties, including a large redshift (>78 nm) in the fluorescence spectrum and novel positive solvatofluorochromic properties with a maximum peak ranging from 484 nm to 546 nm. The potential applications of [12]CPP-8TPAOMe in electron- and hole-transport devices were further investigated, and its bipolar behavior as a charge transport active layer was clearly observed.

View Article and Find Full Text PDF

The all-cis 1,2,3,4,5,6-hexafluorocyclohexane CHF (1) is a well-known molecule which has an unusually large molecular dipole moment (6.2 Debye), and plentiful novel excess electron compounds have been successfully designed on the basis of it recently. Inspired by 1, in this study, we tried to replace all the F atoms in molecule CHF with Cl atoms and obtained the all-cis 1,2,3,4,5,6-hexachlorocyclohexane CHCl (2).

View Article and Find Full Text PDF