Publications by authors named "Zaishan Lin"

Background And Purpose: Metastasis of non-metastatic non-small cell lung cancer (NMNSCLC) to contralateral hilar lymph nodes (CHLN) eliminates the opportunity for radical therapy. This study aims to analyze whether CHLN metastasis in NMNSCLC is commonly overestimated in clinical practice and to establish a predictive model for enhanced precision.

Methods And Materials: We conducted a retrospective analysis of 834 pathologically confirmed NMNSCLC patients.

View Article and Find Full Text PDF
Article Synopsis
  • Long noncoding RNAs (lncRNAs) play a critical role in regulating biological processes, but their significance in nasopharyngeal carcinoma (NPC) is not well understood.
  • The study investigates a specific lncRNA called RRFERV, which is highly expressed in NPC and linked to poor clinical outcomes; it enhances cancer progression and resistance to radiation therapy by interacting with certain microRNAs.
  • The findings suggest that targeting RRFERV could overcome resistance to treatment and induce cell death in NPC, presenting a promising therapeutic strategy for difficult-to-treat cases.
View Article and Find Full Text PDF

Background: High expression of ubiquitin ligase MDM2 is a primary cause of p53 inactivation in many tumors, making it a promising therapeutic target. However, MDM2 inhibitors have failed in clinical trials due to p53-induced feedback that enhances MDM2 expression. This underscores the urgent need to find an effective adaptive genotype or combination of targets.

View Article and Find Full Text PDF

Typically, solid materials exhibit transverse contraction in response to stretching in the orthogonal direction and transverse expansion under compression conditions. However, when flexible graphene nanosheets are assembled into a 3D porous architecture, the orientation-arrangement-delivered directional deformation of micro-nanosheets may induce anomalous mechanical properties. In this study, a 3D hierarchical graphene metamaterial (GTM) with twin-structured morphologies is assembled by manipulating the temperature gradient for ice growth during in situ freeze-casting procedures.

View Article and Find Full Text PDF

We report that lightweight, anisotropic, mechanically flexible, and high performance thermally insulating materials are fabricated by the assembly of graphene oxide (GO) and polyimide (PI). With an appropriate ratio between GO and PI building blocks, the rGO/PI thermally insulating material exhibits hierarchically aligned microstructures with high porosity. These microstructures endow the rGO/PI nanocomposite with low mass density and super-insulating property (extremely low thermal conductivity of 0.

View Article and Find Full Text PDF

Carbon nanotube yarn actuators are in great demand for flexible devices or intelligent applications. Artificial muscles based on carbon nanotube yarn have achieved great progress over past decades. However, uncontrollable, small deformations and relatively slow deformation recovery are still great challenges for carbon nanotube yarn artificial muscles.

View Article and Find Full Text PDF

Graphene-enhanced polymer matrix nanocomposites are attracting ever increasing attention in the electromagnetic (EM) interference (EMI) shielding field because of their improved electrical property. Normally, the graphene is introduced into the matrix by chemical functionalization strategy. Unfortunately, the electrical conductivity of the nanocomposite is weak because the graphene nanosheets are not interconnected.

View Article and Find Full Text PDF

Lightweight, high-performance, thermally insulating, and antifrosting porous materials are in increasing demand to improve energy efficiency in many fields, such as aerospace and wearable devices. However, traditional thermally insulating materials (porous ceramics, polymer-based sponges) could not simultaneously meet these demands. Here, we propose a hierarchical assembly strategy for producing nanocomposite foams with lightweight, mechanically flexible, superinsulating, and antifrosting properties.

View Article and Find Full Text PDF

Graphene is ideal filler in nanocomposites due to its unique mechanical, electrical and thermal properties. However, it is challenging to uniformly distribute the large fraction of graphene fillers into a polymer matrix because graphene is not easily functionalized. We report a novel method to introduce a large fraction of graphene into a styrene-butadiene rubber (SBR) matrix.

View Article and Find Full Text PDF

Electromagnetic interference (EMI) shielding materials for electronic devices in aviation and aerospace not only need lightweight and high shielding effectiveness, but also should withstand harsh environments. Traditional EMI shielding materials often show heavy weight, poor thermal stability, short lifetime, poor tolerance to chemicals, and are hard-to-manufacture. Searching for high-efficiency EMI shielding materials overcoming the above weaknesses is still a great challenge.

View Article and Find Full Text PDF

Electrical stimulation of shape-memory polymers (SMPs) has many advantages over thermal methods; creating an efficient conductive path through the bulk polymers is essential for developing high performance electroactive systems. Here, we show that a three-dimensional (3D) porous carbon nanotube sponge can serve as a built-in integral conductive network to provide internal, homogeneous, in situ Joule heating for shape-memory polymers, thus significantly improving the mechanical and thermal behavior of SMPs. As a result, the 3D nanocomposites show a fast response and produce large exerting forces (with a maximum flexural stress of 14.

View Article and Find Full Text PDF

The creation of stiff yet multifunctional three-dimensional porous carbon architecture at very low cost is still challenging. In this work, lightweight and stiff carbon foam (CF) with adjustable pore structure was prepared by using flour as the basic element via a simple fermentation and carbonization process. The compressive strength of CF exhibits a high value of 3.

View Article and Find Full Text PDF

The creation of superelastic, flexible three-dimensional (3D) graphene-based architectures is still a great challenge due to structure collapse or significant plastic deformation. Herein, we report a facile approach of transforming the mechanically fragile reduced graphene oxide (rGO) aerogel into superflexible 3D architectures by introducing water-soluble polyimide (PI). The rGO/PI nanocomposites are fabricated using strategies of freeze casting and thermal annealing.

View Article and Find Full Text PDF