As a result of the non-directionality of ionic bonds, oppositely charged ions always assemble into closely packed clusters or crystals rather than linear structured ionic species. Here, we generated a series of linear calcium carbonate chains, (CaCO), with an orientated directionality of the ionic interactions. The formation of these ionic chains with long-range ordered ionic interactions was originally induced by the dipole orientation of the ions and subsequently preserved by capping agents.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2024
Living organisms in nature, such as magnetotactic bacteria and eggs, generate various organic-inorganic hybrid materials, providing unique functionalities. Inspired by such natural hybrid materials, researchers can reasonably integrate biomaterials with living organisms either internally or externally to enhance their inherent capabilities and generate new functionalities. Currently, the approaches to enhancing organismal function through biomaterial intervention have undergone rapid development, progressing from the cellular level to the subcellular or multicellular level.
View Article and Find Full Text PDFAlloys often combine different metals to generate superior mechanical properties. However, it is challenging to prepare high mechanical strength minerals with similar strategies. Using calcium carbonate (CaC) and calcium phosphate (CaP) as examples, this work synthesizes a group of compounds with the chemical formulas Ca(CO ) (PO ) (0 < x < 1, CaCPs) by cross-linking ionic oligomers.
View Article and Find Full Text PDFConductive nano-materials and electrical stimulation (ES) have been recognized as a synergetic therapy for ordinary excitable tissue repair. It is worth noting that hard tissues, such as bone tissue, possess bioelectrical properties as well. However, insufficient attention is paid to the synergetic therapy for bone defect regeneration via conductive biomaterials with ES.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2022
Despite the great potency of vaccines to combat infectious diseases, their global use is hindered by a lack of thermostability, which leads to a constant need for cold-chain storage. Here, aiming at long-term thermostability and eliminating cold-chain requirements of bioactive vaccines, we propose that efforts should focus on tailoring the conformational stability of vaccines. Accordingly, we design a nanocoating composed of histidine (His)-coordinated amorphous Zn and 2-methylimidazolate complex (His-aZn-mIM) on single nanoparticles of viral vaccines to introduce intramolecular coordinated linkage between viruses and the nanocoatings.
View Article and Find Full Text PDFPhotothermal therapy is a promising tumor ablation technique that converts light into heat energy to kill cancer cells. Prussian blue (PB), a biocompatible photothermal reagent, has been widely explored for cancer treatment. However, the translational potential of PB is severely hampered by its low photothermal conversion efficiency (PCE) and poor stability.
View Article and Find Full Text PDFInorganic nanomaterials showed great potential as drug carriers for chemotherapeutics molecules due to their biocompatible physical and chemical properties. A manganese-based inorganic nanomaterial manganese phosphate (MnP) had become a new drug carrier in cancer therapy. However, the approach for manganese phosphate preparation and drug integration is still confined in complex methods.
View Article and Find Full Text PDF