Publications by authors named "Zaineb Fourati"

GLIC is a bacterial homologue of the pentameric ligand-gated ion channels (pLGICs) that mediate the fast chemical neurotransmission of nerve signalling in eukaryotes. Because the activation and allosteric modulation features are conserved among prokaryotic and eukaryotic pLGICs, GLIC is commonly used as a model to study the allosteric transition and structural pharmacology of pLGICs. It has previously been shown that GLIC is inhibited by some carboxylic acid derivatives.

View Article and Find Full Text PDF

Plasmodium falciparum is the main cause of disease and death from malaria. P. falciparum virulence resides in the ability of infected erythrocytes (IEs) to sequester in various tissues through the interaction between members of the polymorphic P.

View Article and Find Full Text PDF

The pentameric ligand-gated ion channel (pLGIC) from (GLIC) has provided insightful structure-function views on the permeation process and the allosteric regulation of the pLGICs family. However, GLIC is activated by pH instead of a neurotransmitter and a clear picture for the gating transition driven by protons is still lacking. We used an electrostatics-based (finite difference Poisson-Boltzmann/Debye-Hückel) method to predict the acidities of all aspartic and glutamic residues in GLIC, both in its active and closed-channel states.

View Article and Find Full Text PDF

Ion channel modulation by general anesthetics is a vital pharmacological process with implications for receptor biophysics and drug development. Functional studies have implicated conserved sites of both potentiation and inhibition in pentameric ligand-gated ion channels, but a detailed structural mechanism for these bimodal effects is lacking. The prokaryotic model protein GLIC recapitulates anesthetic modulation of human ion channels, and it is accessible to structure determination in both apparent open and closed states.

View Article and Find Full Text PDF

Pentameric ligand-gated ion channels (pLGICs) constitute a widespread class of ion channels, present in archaea, bacteria, and eukaryotes. Upon binding of their agonists in the extracellular domain, the transmembrane pore opens, allowing ions to go through, via a gating mechanism that can be modulated by a number of drugs. Even though high-resolution structural information on pLGICs has increased in a spectacular way in recent years, both in bacterial and in eukaryotic systems, the structure of the open channel conformation of some intensively studied receptors whose structures are known in a nonactive (closed) form, such as pLGIC (ELIC), is still lacking.

View Article and Find Full Text PDF

The Gloeobacter violaceus ligand-gated ion channel (GLIC) has been extensively studied by X-ray crystallography and other biophysical techniques. This provided key insights into the general gating mechanism of pentameric ligand-gated ion channel (pLGIC) signal transduction. However, the GLIC is activated by lowering the pH and the location of its putative proton activation site(s) still remain(s) unknown.

View Article and Find Full Text PDF

The Pat1 protein is a central player of eukaryotic mRNA decay that has also been implicated in translational control. It is commonly considered a central platform responsible for the recruitment of several RNA decay factors. We demonstrate here that a yeast-specific C-terminal region from Pat1 interacts with several short motifs, named helical leucine-rich motifs (HLMs), spread in the long C-terminal region of yeast Dcp2 decapping enzyme.

View Article and Find Full Text PDF

Pentameric ligand-gated ion channels (pLGICs) mediate fast chemical signaling through global allosteric transitions. Despite the existence of several high-resolution structures of pLGICs, their dynamical properties remain elusive. Using the proton-gated channel GLIC, we engineered multiple fluorescent reporters, each incorporating a bimane and a tryptophan/tyrosine, whose close distance causes fluorescence quenching.

View Article and Find Full Text PDF

Barbiturates induce anesthesia by modulating the activity of anionic and cationic pentameric ligand-gated ion channels (pLGICs). Despite more than a century of use in clinical practice, the prototypic binding site for this class of drugs within pLGICs is yet to be described. In this study, we present the first X-ray structures of barbiturates bound to GLIC, a cationic prokaryotic pLGIC with excellent structural homology to other relevant channels sensitive to general anesthetics and, as shown here, to barbiturates, at clinically relevant concentrations.

View Article and Find Full Text PDF

Pentameric ligand-gated ion channels (pLGICs) mediate fast chemical neurotransmission of nerve signalling in the central and peripheral nervous systems. GLIC is a bacterial homologue of eukaryotic pLGIC, the X-ray structure of which has been determined in three different conformations. GLIC is thus widely used as a model to study the activation and the allosteric transition of this family of receptors.

View Article and Find Full Text PDF

Upf1, Upf2, and Upf3 are the principal regulators of nonsense-mediated mRNA decay (NMD), a cytoplasmic surveillance pathway that accelerates the degradation of mRNAs undergoing premature translation termination. These three proteins interact with each other, the ribosome, the translation termination machinery, and multiple mRNA decay factors, but the precise mechanism allowing the selective detection and degradation of nonsense-containing transcripts remains elusive. Here, we have determined the crystal structure of the N-terminal mIF4G domain from Saccharomyces cerevisiae Upf2 and identified a highly conserved region in this domain that is essential for NMD and independent of Upf2's binding sites for Upf1 and Upf3.

View Article and Find Full Text PDF

Introduction: Conjugation is an excellent natural mode of DNA transfer in vivo between bacteria, particularly when these conjugative elements carry technological traits such as bacteriocin encoding genes. In the present work, the bacteriocinogenic plasmid pIBF4 from Bacillus thuringiensis responsible of Bacthuricin F4 synthesis was isolated and characterized.

Methodology: To isolate pIBF4, the total plasmid DNA from a non-bacteriocin transposant carrying the mini-Tn10 spectinomycin selective marker was extracted and used to transform Escherichia coli strain Top10.

View Article and Find Full Text PDF

Eukaryotic mRNA decay is a highly regulated process allowing cells to rapidly modulate protein production in response to internal and environmental cues. Mature translatable eukaryotic mRNAs are protected from fast and uncontrolled degradation in the cytoplasm by two cis-acting stability determinants: a methylguanosine (m(7)G) cap and a poly(A) tail at their 5' and 3' extremities, respectively. The hydrolysis of the m(7)G cap structure, known as decapping, is performed by the complex composed of the Dcp2 catalytic subunit and its partner Dcp1.

View Article and Find Full Text PDF