Vaccinia virus (VACV) enters cells by a low pH endosomal route or by direct fusion with the plasma membrane. We previously found differences in entry properties of several VACV strains: entry of WR was enhanced by low pH, reduced by bafilomycin A1 and relatively unaffected by heparin, whereas entry of IHD-J, Copenhagen and Elstree were oppositely affected. Since binding and entry modes may have been selected by specific conditions of in vitro propagation, we now examined the properties of three distinct, recently isolated cowpox viruses and a monkeypox virus as well as additional VACV and cowpox virus strains.
View Article and Find Full Text PDFVaccinia virus (VACV), a member of the chordopox subfamily of the Poxviridae, abortively infects insect cells. We have investigated VACV infection of Drosophila S2 cells, which are useful for protein expression and genome-wide RNAi screening. Biochemical and electron microscopic analyses indicated that VACV entry into Drosophila S2 cells depended on the VACV multiprotein entry-fusion complex but appeared to occur exclusively by a low pH-dependent endocytic mechanism, in contrast to both neutral and low pH entry pathways used in mammalian cells.
View Article and Find Full Text PDFVaccinia virus (VACV) strain WR can enter cells by a low pH endosomal pathway or direct fusion with the plasma membrane at neutral pH. Here, we compared attachment and entry of five VACV strains in six cell lines and discovered two major patterns. Only WR exhibited pH 5-enhanced rate of entry following neutral pH adsorption to cells, which correlated with sensitivity to bafilomycin A1, an inhibitor of endosomal acidification.
View Article and Find Full Text PDFNon-viral gene delivery by immobilization of complexes to cell-adhesive biomaterials, a process termed substrate-mediated delivery, has many in vitro research applications such as transfected cell arrays or models of tissue growth. In this report, we quantitatively investigate the efficiency of gene delivery by surface immobilization, and compare this efficiency to the more typical bolus delivery. The ability to immobilize vectors while allowing cellular internalization is impacted by the biomaterial and vector properties.
View Article and Find Full Text PDFBackground: Gene delivery by non-specific adsorption of non-viral vectors to protein-coated surfaces can reduce the amount of DNA required, and also increase transgene expression and the number of cells expressing the transgene. The protein on the surface mediates cell adhesion and vector immobilization, and functions to colocalize the two to enhance gene delivery. This report investigates the mechanism and specificity by which the protein coating enhances gene transfer, and determines if the protein coating targets the vector for internalization by a specific pathway.
View Article and Find Full Text PDFTransfected cell arrays (TCAs) represent a high-throughput technique to correlate gene expression with functional cell responses. Despite advances in TCAs, improvements are needed for the widespread application of this technology. We have developed a TCA that combines a two-plasmid system and dual-bioluminescence imaging to quantitatively normalize for variability in transfection and increase sensitivity.
View Article and Find Full Text PDFGene delivery from tissue engineering scaffolds has potential to promote localized transgene expression that can induce the formation of functional tissues. Substrate-mediated delivery, an alternative delivery strategy to sustained release, is based on immobilization of DNA complexes to the polymer surface for subsequent delivery to cells cultured on the substrate. We investigate polyethylenimine (PEI)/DNA complex immobilization and subsequent cellular transfection on tissue engineering scaffolds fabricated from poly(lactide-co-glycolide) (PLG).
View Article and Find Full Text PDFBiomaterials can potentially enhance the delivery of viral and nonviral vectors for both basic science and clinical applications. Vectors typically consist of nucleic acids (DNA, RNA) packaged with proteins, lipids, or cationic polymers, which facilitate cellular internalization and trafficking. These vectors can associate with biomaterials that support cell adhesion, a process we term substrate-mediated delivery.
View Article and Find Full Text PDFEfficient gene delivery is a fundamental goal of biotechnology and has numerous applications in both basic and applied science. Substrate-mediated delivery and reverse transfection enhance gene transfer by increasing the concentration of DNA in the cellular microenvironment through immobilizing a plasmid to a cell culture substrate prior to cell seeding. In this report, we examine gene delivery of plasmids that were complexed with cationic polymers (polyplexes) or lipids (lipoplexes) and subsequently immobilized to cell culture or biomaterial substrates by adsorption.
View Article and Find Full Text PDF