Inflammatory breast cancer (IBC) is the most metastatic variant of locally advanced breast cancer. IBC has distinctive characteristics including invasion of tumor emboli into the skin and rapid disease progression. Given our previous studies suggesting that HDAC inhibitors have promise in targeting IBC, the present study revealed that the class I HDAC inhibitor Romidepsin (FK-288, Istodax; Celgene Corporation, Summit, NJ) potently induced destruction of IBC tumor emboli and lymphatic vascular architecture.
View Article and Find Full Text PDFAlthough Inflammatory Breast Cancer (IBC) is recognized as the most metastatic variant of locally advanced breast cancer, the molecular basis for the distinct clinical presentation and accelerated program of metastasis of IBC is unknown. Reverse phase protein arrays revealed activation of the receptor tyrosine kinase, anaplastic lymphoma kinase (ALK) and biochemically-linked downstream signaling molecules including JAK1/STAT3, AKT, mTor, PDK1, and AMPKβ in pre-clinical models of IBC. To evaluate the clinical relevance of ALK in IBC, analysis of 25 IBC patient tumors using the FDA approved diagnostic test for ALK genetic abnormalities was performed.
View Article and Find Full Text PDFInflammatory breast cancer (IBC) is the most aggressive type of advanced breast cancer characterized by rapid proliferation, early metastatic development and poor prognosis. Since there are few preclinical models of IBC, there is a general lack of understanding of the complexity of the disease. Recently, we have developed a new model of IBC derived from the pleural effusion of a woman with metastatic secondary IBC.
View Article and Find Full Text PDFChronic central neuropathic pain after central nervous system injuries remains refractory to therapeutic interventions. A novel approach would be to target key intracellular signaling proteins that are known to contribute to continued activation by phosphorylation of kinases, transcription factors, and/or receptors that contribute to changes in membrane excitability. We demonstrate that one signaling kinase, calcium/calmodulin-dependent kinase II (CaMKII), is critical in maintaining aberrant dorsal horn neuron hyperexcitability in the neuropathic pain condition after spinal cord injury (SCI).
View Article and Find Full Text PDFTumors that display a highly metastatic phenotype contain subpopulations of cells that display characteristics similar to embryonic stem cells. These cells exhibit the ability to undergo self-renewal; slowly replicate to retain a nucleoside analog label, leading to their definition as "label-retaining cells"; express specific surface markers such as CD44(+)/CD24(-/low) and CD133; and can give rise to cells of different lineages (i.e.
View Article and Find Full Text PDFBackground: Inflammatory breast cancer (IBC) is the most aggressive form of locally advanced breast cancer (LABC). Patients with IBC commonly present with skin metastasis, which are observed microscopically as tumor emboli within dermal lymphatics. These metastatic tumor cells aberrantly overexpress E-cadherin and exhibit the ability to undergo self-renewal and are highly invasive.
View Article and Find Full Text PDFThe 5-lipoxygenase (5LO) produces leukotriene B(4) and 15-epilipoxin-A(4) (15-epi-LXA(4)). Phosphorylation at Ser(523) by protein kinase A (PKA) prevents 5LO shift to the perinuclear membrane. Atorvastatin and pioglitazone up-regulate 15-epi-LXA(4) production in the heart.
View Article and Find Full Text PDFElevation of extracellular glutamate contributes to cell death and functional impairments generated by spinal cord injury (SCI), in part through the activation of the neurotoxic cytokine interleukin-1beta (IL-1beta). This study examines the participation of IL-1beta and its regulation by the endogenous interleukin-1 receptor antagonist (IL-1ra) in glutamate toxicity following SCI. Glutamate, glutamatergic agonists and SCI had similar effects on levels of IL-1beta and IL-1ra.
View Article and Find Full Text PDFRecent work regarding chronic central neuropathic pain (CNP) following spinal cord injury (SCI) suggests that activation of key signaling molecules such as members of the mitogen activated protein kinase (MAPK) family play a role in the expression of at-level mechanical allodynia. Previously, we have shown that the development of at-level CNP following moderate spinal cord injury is correlated with increased expression of the activated (and thus phosphorylated) forms of the MAPKs extracellular signal related kinase and p38 MAPK. The current study extends this work by directly examining the role of p38 MAPK in the maintenance of at-level CNP following spinal cord injury.
View Article and Find Full Text PDFRats given moderate spinal cord injury (SCI) display increases in the expression of the activated form of the transcription factor cyclic AMP responsive element binding protein (CREB) in spinal segments of dermatomes corresponding to permanent mechanical allodynia, a model of chronic central neuropathic pain (CNP; (Crown, E.D., Ye, Z.
View Article and Find Full Text PDFCentral neuropathic pain (CNP) is an important problem following spinal cord injury (SCI), because it severely affects the quality of life of SCI patients. As in the patient population, the majority of rats develop significant allodynia (CNP rats) after moderate SCI. However, about 10% of SCI rats do not develop allodynia, or develop significantly less allodynia than CNP rats (non-CNP rats).
View Article and Find Full Text PDFWe investigated in vivo in rats whether sufficient glutamate is released following spinal cord injury (SCI) to kill oligodendrocytes. Microdialysis sampling was used to establish the level of glutamate released (550 +/- 80 microM) in the white matter during SCI. This glutamate concentration was administered into the spinal cords of other rats and the densities of oligodendrocytes remaining 24 and 72 h later determined by counting cells immunostained with the oligodendrocyte marker CC-1.
View Article and Find Full Text PDFMechanical and thermal allodynia develops after spinal cord injury in three areas relative to the lesion: below level, at level, and above level. The present study tests colocalization of CGRP, associated with nociceptive neurons, with growth-associated protein (GAP-43), expressed in growing neurites, to test for neurite sprouting as a mechanism for reorganization of pain pathways at the level of the lesion and distant segments. Male Sprague-Dawley rats were divided into three groups: sham control (N = 10), hemisected at T13 and sacrificed at 3 days (N = 5) and at 30 days (N = 5) following surgery, the spinal cord tissue was prepared for standard fluorescent immunocytochemistry using mouse monoclonal anti-GAP-43 (1:200) and/or rabbit polyclonal anti-CGRP (1:200), density of immunoreaction product (IR) was quantified using the Bioquant software and values from the hemisected group were compared to similar regions from the sham control.
View Article and Find Full Text PDFGlutamate is a major excitatory neurotransmitter in the mammalian CNS. After its release, specific transporter proteins rapidly remove extracellular glutamate from the synaptic cleft. The clearance of excess extracellular glutamate prevents accumulation under normal conditions; however, CNS injury elevates extracellular glutamate concentrations to neurotoxic levels.
View Article and Find Full Text PDF