Ultraviolet spectroscopy provides unique insights into the structure of matter with applications ranging from fundamental tests to photochemistry in the Earth's atmosphere and astronomical observations from space telescopes. At longer wavelengths, dual-comb spectroscopy, using two interfering laser frequency combs, has become a powerful technique capable of simultaneously providing a broad spectral range and very high resolution. Here we demonstrate a photon-counting approach that can extend the unique advantages of this method into ultraviolet regions where nonlinear frequency conversion tends to be very inefficient.
View Article and Find Full Text PDFAnalog quantum simulations with Rydberg atoms in optical tweezers routinely address strongly correlated many-body problems due to the hardware-efficient implementation of the Hamiltonian. Yet, their generality is limited, and flexible Hamiltonian-design techniques are needed to widen the scope of these simulators. Here we report on the realization of spatially tunable interactions for XYZ models implemented by two-color near-resonant coupling to Rydberg pair states.
View Article and Find Full Text PDFAdvanced machine learning models are currently impossible to run on edge devices such as smart sensors and unmanned aerial vehicles owing to constraints on power, processing, and memory. We introduce an approach to machine learning inference based on delocalized analog processing across networks. In this approach, named Netcast, cloud-based "smart transceivers" stream weight data to edge devices, enabling ultraefficient photonic inference.
View Article and Find Full Text PDFDual-comb spectroscopy (DCS) normally operates with two independent, relatively low power and actively synchronized laser sources. This hinders the wide adoption for practical implementations and frequency conversion into deep UV and VUV spectral ranges. Here, we report a fully passive, high power dual-comb laser based on thin-disk technology and its application to direct frequency comb spectroscopy.
View Article and Find Full Text PDFTime-resolved near-infrared absorption spectroscopy of single non-repeatable transient events is performed at high spectral resolution with a dual-comb interferometer using a continuous-wave laser followed by a single electro-optic amplitude modulator. By sharing high-speed electrical/optical components, our spectrometer greatly simplifies the implementation of dual-comb spectroscopy and offers a high mutual coherence time, measured up to 50 s, without any active stabilization system and/or data processing. The time resolution is as short as 100 µs in our experimental demonstration.
View Article and Find Full Text PDFA novel strategy for large-scale synthesis of ZnO nanowire film is reported, which inherits the advantages of the solution-phase method and seeded growth process, such as low-temperature, efficient, economical, facile and flexible. It is easy to implement on various metals through room-temperature electrodeposition, followed by hydrothermal treatment at 90 °C, and suitable for industrialized production. The ZnO nanowires with an average wire diameter about 40 nm are in situ grown from and on nanocrystalline zinc coating, which forms a strong metallurgical bonding with the substrates.
View Article and Find Full Text PDFMid-infrared high-resolution spectroscopy has proven an invaluable tool for the study of the structure and dynamics of molecules in the gas phase. The advent of frequency combs advances the frontiers of precise molecular spectroscopy. Here we demonstrate, in the important 3-µm spectral region of the fundamental CH stretch in molecules, dual-comb spectroscopy with experimental coherence times between the combs that exceed half an hour.
View Article and Find Full Text PDFDual-comb systems based on two optical frequency combs of slightly different line spacing emerge as powerful tools in spectroscopy and interferometry. Semiconductor lasers have a high impact in continuous-wave tunable laser spectroscopy. Here we demonstrate the first dual-comb interferometer based on a single femtosecond semiconductor laser: a dual-comb modelocked optically pumped external-cavity surface-emitting laser (MIXSEL) ideally suited for a 1 to 10 GHz comb spacing.
View Article and Find Full Text PDFLaser frequency combs emit a spectrum with hundreds of thousands of evenly spaced phase-coherent narrow lines. A comb-enabled instrument, the dual-comb interferometer, exploits interference between two frequency combs and attracts considerable interest in precision spectroscopy and sensing, distance metrology, tomography, telecommunications, etc. Mutual coherence between the two combs over the measurement time is a pre-requisite to interferometry, although it is instrumentally challenging.
View Article and Find Full Text PDF