Publications by authors named "Zaid Chachar"

Soil Phosphorus (P) fixation and Arsenic (As) contamination pose significant challenges to agriculture and environmental health. Biochar has emerged as a promising soil amendment capable of enhancing P availability while immobilizing As. This review explored the mechanisms by which biochar influences P dynamics and As sequestration.

View Article and Find Full Text PDF

The integration of zinc nanoparticles (Zn NPs) with biochar offers a transformative approach to sustainable agriculture by enhancing plant productivity and human nutrition. This combination improves soil health, optimizes nutrient uptake, and increases resilience to environmental stressors, leading to superior crop performance. Our literature review shows that combining Zn NPs with biochar significantly boosts the crop nutrient composition, including proteins, vitamins, sugars, and secondary metabolites.

View Article and Find Full Text PDF

In this study, the contents of four carotenoids in 244 maize inbred lines were detected and about three million single nucleotide polymorphisms (SNPs) for genome-wide association study to preliminarily analyze the genetic mechanism of maize kernel carotenoids. We identified 826 quantitative trait loci (QTLs) were significantly associated with carotenoids contents, and two key candidate genes Zm00001d029526 (CYP18) and Zm00001d023336 (wrky91) were obtained. In addition, we found a germplasm IL78 with higher carotenoids.

View Article and Find Full Text PDF

Maize (Zea mays L.), a staple food and significant economic crop, is enriched with riboflavin, micronutrients and other compounds that are beneficial for human health. As emphasis on the nutritional quality of crops increases maize research has expanded to focus on both yield and quality.

View Article and Find Full Text PDF

Sugarcane is the main source of sugar worldwide, and 80% of the sucrose production comes from sugarcane. However, the genetic differentiation and basis of agronomic traits remain obscure. Here, we sequenced the whole-genome of 219 elite worldwide sugarcane cultivar accessions.

View Article and Find Full Text PDF

Vegetable cultivation stands as a pivotal element in the agricultural transformation illustrating a complex interplay between technological advancements, evolving environmental perspectives, and the growing global demand for food. This comprehensive review delves into the broad spectrum of developments in modern vegetable cultivation practices. Rooted in historical traditions, our exploration commences with conventional cultivation methods and traces the progression toward contemporary practices emphasizing the critical shifts that have refined techniques and outcomes.

View Article and Find Full Text PDF

Anthocyanins are plant-based pigments that are primarily present in berries, grapes, purple yam, purple corn and black rice. The research on fruit corn with a high anthocyanin content is not sufficiently extensive. Considering its crucial role in nutrition and health it is vital to conduct further studies on how anthocyanin accumulates in fruit corn and to explore its potential for edible and medicinal purposes.

View Article and Find Full Text PDF
Article Synopsis
  • * The study analyzed 170 maize materials using GWAS to identify quantitative trait nucleotides (QTNs) linked to trace element content, discovering a total of 87 for Mn, 205 for Fe, and 310 for Mo.
  • * The research identified superior alleles and predicted combinations that could enhance Mn, Fe, and Mo levels in maize, contributing to the breeding of high-quality varieties and improving our understanding of how trace elements are regulated in maize.
View Article and Find Full Text PDF

Magnesium (Mg) is pivotal for the vitality, yield, and quality of horticultural crops. Central to plant physiology, Mg powers photosynthesis as an integral component of chlorophyll, bolstering growth and biomass accumulation. Beyond basic growth, it critically affects crop quality factors, from chlorophyll synthesis to taste, texture, and shelf life.

View Article and Find Full Text PDF

Drought is one of the most critical environmental factors constraining maize production. When it occurs at the flowering stage, serious yield losses are caused, and often, the damage is irretrievable. In this study, anthesis to silk interval (ASI), plant height (PH), and ear biomass at the silking date (EBM) of 279 inbred lines were studied under both water-stress (WS) and well-water (WW) field conditions, for three consecutive years.

View Article and Find Full Text PDF