Publications by authors named "Zaichao Li"

Phase change materials (PCMs) have shown significant potential in enhancing the thermal regulation of lithium-ion (Li-ion) batteries. However, existing organic solid-liquid PCMs encounter several issues, including leakage, limited energy density, and an inability to fulfill the demands of comprehensive thermal management across various environmental conditions. This study takes inspiration from beavers, which construct dams to regulate the temperature of their habitats in different climates, and introduces a dual-network aerogel-based composite PCM (CPCM) designed for the all-weather thermal control of Li-ion batteries.

View Article and Find Full Text PDF

Thermal runaway (TR) is considered a significant safety hazard for lithium batteries, and thermal protection materials are crucial in mitigating this risk. However, current thermal protection materials generally suffer from poor mechanical properties, flammability, leakage, and rigid crystallization, and they struggle to continuously block excess heat transfer and propagation once thermal saturation occurs. This study proposes a novel type of thermal protection material: an aerogel coupled composite phase change material (CPCM).

View Article and Find Full Text PDF