Penetration and transmission characteristics of outdoor particulate matter through building envelope structure into indoor and its influencing factors were studied by experimental and numerical simulation methods. With the aid of fast mobility particle spectrometer (fast mobility particle sizer, FMPS), particle number concentrations were measured and particle penetration rates were obtained. The effects of slit size and flow pressure on the infiltration process were studied.
View Article and Find Full Text PDFThe emission characteristics of ultrafine particles released from pulverized coal combustion were studied, the size spectra of ultrafine particles (5.6-560 nm) were measured with FMPS (fast mobility particle sizer) on a self-built aerosol experiment platform. Meanwhile, a particle dynamic evolution model was established to obtain the particle deposition rate and the emission rate through the optimized algorithm.
View Article and Find Full Text PDFUltrafine particle (UFP) number concentrations obtained from three different vehicles were measured using fast mobility particle sizer (FMPS) and automobile exhaust gas analyzer. UFP number concentration and size distribution were studied at different idle driving speeds. The results showed that at a low idle speed of 800 rmin-1 , the emission particle number concentration was the lowest and showed a increasing trend with the increase of idle speed.
View Article and Find Full Text PDFHuan Jing Ke Xue
August 2014
Atmospheric ultrafine particles (UFPs) were monitored with fast mobility particle sizer (FMPS) in continuous haze weather and the haze fading process during December 6 to 11, 2013 in Hangzhou. Particle concentration and size distribution were studied associated with meteorological factors. The results showed that number concentrations were the highest at night and began to reduce in the morning.
View Article and Find Full Text PDFContinuous measurement and analysis of the atmospheric ultrafine particle number concentration were performed in Hangzhou from March to May, 2012 by using the fast mobility particle sizer (FMPS). The result showed that daily number concentration of nucleation mode (5.6-20 nm), Aitken mode (20-100 nm), and accumulation mode (100-560 nm) particles, and total particles were 0.
View Article and Find Full Text PDFAtmospheric ultrafine particles (UFPs) were measured with fast mobility particle sizer(FMPS) in Hangzhou, during March 2011 to February 2012. The number concentration and size distribution of UFPs associated with meteorology were studied. The results showed that the number concentration of UFPs was logarithmic bi-modal distribution, and the seasonal levels presented winter > summer > spring> autumn.
View Article and Find Full Text PDF