The essential oil component α-pinene has multiple biological activities. However, its application is limited owing to its volatility, low aqueous solubility, and chemical instability. For the aim of improving its physicochemical properties, α-pinene was encapsulated in conventional liposomes (CLs) and drug-in-cyclodextrin-in-liposomes (DCLs).
View Article and Find Full Text PDFMycobacteriophages Darionha, Salz, and ThreeRngTarjay are mycobacteriophages isolated using the host mc155. Following isolation from soil samples, all three siphoviridae phages were characterized, and their genomes were sequenced and annotated.
View Article and Find Full Text PDFDrug-in-cyclodextrin-in-liposome (DCL) represents a very promising approach for preserving essential oil (EO) components, thereby extending their shelf life and activity. In this study, we examined the effect of chemical structure, octanol/water partition coefficient (log P), and Henry's law constant (H) on the encapsulation and the release of monoterpenes (eucalyptol, pulegone, terpineol, and thymol) and phenylpropenes (estragole and isoeugenol) from DCLs. Hydroxypropyl-β-cyclodextrin/EO component (HP-β-CD/EO component) inclusion complexes were prepared in aqueous solution and loaded into liposomes by the ethanol injection method.
View Article and Find Full Text PDFCyclodextrins (CDs) are cyclic oligosaccharides able to improve drug water solubility and stability by forming CD/drug inclusion complexes. To further increase drug entrapment and delay its release, the CD/drug inclusion complex can be embedded in the aqueous phase of a liposome, a lipid vesicle composed of phospholipid bilayer surrounding an aqueous compartment. The resulting carrier is known as drug-in-cyclodextrin-in-liposome (DCL) system.
View Article and Find Full Text PDFThe encapsulation of essential oil components into liposomes was demonstrated to improve their solubility and chemical stability. In this study, we investigated the effect of chemical structure, Henry's law constant (H), and aqueous solubility of essential oil components on their liposomal encapsulation. Estragole, eucalyptol, isoeugenol, pulegone, terpineol, and thymol were encapsulated in lipoid S100-liposomes using the ethanol injection method.
View Article and Find Full Text PDF