Publications by authors named "Zahra Shakeri Hossein Abad"

Few studies examining the patient outcomes of concurrent neurological manifestations during acute COVID-19 leveraged multinational cohorts of adults and children or distinguished between central and peripheral nervous system (CNS vs. PNS) involvement. Using a federated multinational network in which local clinicians and informatics experts curated the electronic health records data, we evaluated the risk of prolonged hospitalization and mortality in hospitalized COVID-19 patients from 21 healthcare systems across 7 countries.

View Article and Find Full Text PDF

Generative Artificial Intelligence is set to revolutionize healthcare delivery by transforming traditional patient care into a more personalized, efficient, and proactive process. Chatbots, serving as interactive conversational models, will probably drive this patient-centered transformation in healthcare. Through the provision of various services, including diagnosis, personalized lifestyle recommendations, dynamic scheduling of follow-ups, and mental health support, the objective is to substantially augment patient health outcomes, all the while mitigating the workload burden on healthcare providers.

View Article and Find Full Text PDF

The integration of Electronic Health Records (EHRs) with Machine Learning (ML) models has become imperative in examining patient outcomes due to the vast amounts of clinical data they provide. However, critical information regarding social and behavioral factors that affect health, such as social isolation, stress, and mental health complexities, is often recorded in unstructured clinical notes, hindering its accessibility. This has resulted in an over-reliance on clinical data in current EHR-based research, potentially leading to disparities in health outcomes.

View Article and Find Full Text PDF

Background: Characterizing Post-Acute Sequelae of COVID (SARS-CoV-2 Infection), or has been challenging due to the multitude of sub-phenotypes, temporal attributes, and definitions. Scalable characterization of PASC sub-phenotypes can enhance screening capacities, disease management, and treatment planning.

Methods: We conducted a retrospective multi-centre observational cohort study, leveraging longitudinal electronic health record (EHR) data of 30,422 patients from three healthcare systems in the Consortium for the Clinical Characterization of COVID-19 by EHR (4CE).

View Article and Find Full Text PDF

Artificial intelligence (AI) models for automatic generation of narrative radiology reports from images have the potential to enhance efficiency and reduce the workload of radiologists. However, evaluating the correctness of these reports requires metrics that can capture clinically pertinent differences. In this study, we investigate the alignment between automated metrics and radiologists' scoring of errors in report generation.

View Article and Find Full Text PDF

Physical and psychological symptoms lasting months following an acute COVID-19 infection are now recognized as post-acute sequelae of COVID-19 (PASC). Accurate tools for identifying such patients could enhance screening capabilities for the recruitment for clinical trials, improve the reliability of disease estimates, and allow for more accurate downstream cohort analysis. In this retrospective cohort study, we analyzed the EHR of hospitalized COVID-19 patients across three healthcare systems to develop a pipeline for better identifying patients with persistent PASC symptoms (dyspnea, fatigue, or joint pain) after their SARS-CoV-2 infection.

View Article and Find Full Text PDF

The exceptionally rapid development of highly flexible, reusable artificial intelligence (AI) models is likely to usher in newfound capabilities in medicine. We propose a new paradigm for medical AI, which we refer to as generalist medical AI (GMAI). GMAI models will be capable of carrying out a diverse set of tasks using very little or no task-specific labelled data.

View Article and Find Full Text PDF

Anticipation of clinical decompensation is essential for effective emergency and critical care. In this study, we develop a multimodal machine learning approach to predict the onset of new vital sign abnormalities (tachycardia, hypotension, hypoxia) in ED patients with normal initial vital signs. Our method combines standard triage data (vital signs, demographics, chief complaint) with features derived from a brief period of continuous physiologic monitoring, extracted via both conventional signal processing and transformer-based deep learning on ECG and PPG waveforms.

View Article and Find Full Text PDF

Background: In electronic health records, patterns of missing laboratory test results could capture patients' course of disease as well as ​​reflect clinician's concerns or worries for possible conditions. These patterns are often understudied and overlooked. This study aims to identify informative patterns of missingness among laboratory data collected across 15 healthcare system sites in three countries for COVID-19 inpatients.

View Article and Find Full Text PDF

The risk profiles of post-acute sequelae of COVID-19 (PASC) have not been well characterized in multi-national settings with appropriate controls. We leveraged electronic health record (EHR) data from 277 international hospitals representing 414,602 patients with COVID-19, 2.3 million control patients without COVID-19 in the inpatient and outpatient settings, and over 221 million diagnosis codes to systematically identify new-onset conditions enriched among patients with COVID-19 during the post-acute period.

View Article and Find Full Text PDF

Background: Advances in automated data processing and machine learning (ML) models, together with the unprecedented growth in the number of social media users who publicly share and discuss health-related information, have made public health surveillance (PHS) one of the long-lasting social media applications. However, the existing PHS systems feeding on social media data have not been widely deployed in national surveillance systems, which appears to stem from the lack of practitioners and the public's trust in social media data. More robust and reliable data sets over which supervised ML models can be trained and tested reliably is a significant step toward overcoming this hurdle.

View Article and Find Full Text PDF

Background: Crowdsourcing services, such as Amazon Mechanical Turk (AMT), allow researchers to use the collective intelligence of a wide range of web users for labor-intensive tasks. As the manual verification of the quality of the collected results is difficult because of the large volume of data and the quick turnaround time of the process, many questions remain to be explored regarding the reliability of these resources for developing digital public health systems.

Objective: This study aims to explore and evaluate the application of crowdsourcing, generally, and AMT, specifically, for developing digital public health surveillance systems.

View Article and Find Full Text PDF

Early mortality prediction is an actively researched problem that has led to the development of various severity scores and machine learning (ML) models for accurate and reliable detection of mortality in severely ill patients staying in intensive care units (ICUs). However, the uncertainty of such predictions due to irregular patient sampling, missing information, or high diversity of patient data has not yet been adequately addressed. In this paper, we used confident learning (CL) to incorporate sample-uncertainty information into our mortality prediction models and evaluated the performance of these models using a large dataset of 139,367 unique ICU admissions within the eICU Collaborative Research Database (eICU-CRD).

View Article and Find Full Text PDF
Article Synopsis
  • The rise of digital public health surveillance (DPHS) systems is driven by the vast information available on the Internet, prompting a systematic review to understand current research and identify gaps.
  • A total of 755 articles from 54 countries were analyzed, revealing that most studies focused on communicable diseases and were primarily conducted by U.S. researchers, yet there is a lack of diversity in demographics and geographic stratification.
  • The review emphasizes the potential of using online data for real-time public health insights but notes significant limitations, such as the scarcity of longitudinal studies and a lack of robust methods to connect DPHS findings to public health actions.
View Article and Find Full Text PDF

Feature selection is a critical component in supervised machine learning classification analyses. Extraneous features introduce noise and inefficiencies into the system leading to a need for feature reduction techniques. Many feature reduction models use the end-classification results in the feature reduction process, committing a circular error.

View Article and Find Full Text PDF

Given the extensive use of machine learning in patient outcome prediction, and the understanding that the challenging nature of predictions in this field may considerably modify the performance of predictive models, research in this area requires some forms of context-sensitive performance metrics. The area under the receiver operating characteristic curve (AUC), precision, recall, specificity, and F1 are widely used measures of performance for patient outcome prediction. These metrics have several merits: they are easy to interpret and do not need any subjective input from the user.

View Article and Find Full Text PDF

Background: Supervised machine learning (ML) is being featured in the health care literature with study results frequently reported using metrics such as accuracy, sensitivity, specificity, recall, or F1 score. Although each metric provides a different perspective on the performance, they remain to be overall measures for the whole sample, discounting the uniqueness of each case or patient. Intuitively, we know that all cases are not equal, but the present evaluative approaches do not take case difficulty into account.

View Article and Find Full Text PDF

Decision making about discharge destination for critically ill patients is a highly subjective and multidisciplinary process, heavily reliant on the ICU care team, patients and their caregivers' preferences, resource demand, staffing, and bed capacity. Timely identification of discharge disposition can be useful in care planning, and as a surrogate for functional status outcomes following critical illness. Although prior research has proposed methods to predict discharge destination in a critical care setting, they are limited in scope and in the generalizability of their findings.

View Article and Find Full Text PDF