Publications by authors named "Zahra Salmasi"

In this study, DOX (Doxorubicin) and FeO magnetic nanocrystals (SPIONs (Superparamagnetic iron oxide nanocrystals)) were encapsulated in the PLGA-PEG: poly(lactide-co-glycolide)-b-poly(ethylene glycol) nanoparticles for theranostic purposes. The final prepared formulation which is called NPs (Nanoparticles) exhibited a particle size with a mean diameter of ~ 209 nm and a sufficient saturation magnetization value of 1.65 emu/g.

View Article and Find Full Text PDF

Spinal cord injury (SCI) is a complex, multifaceted, progressive, and yet incurable complication that can cause irreversible damage to the individual, family, and society. In recent years strategies for the management and rehabilitation of SCI besides axonal regeneration, remyelination, and neuronal plasticity of the injured spinal cord have significantly improved. Although most of the current research and therapeutic advances have been made in animal models, so far, no specific and complete treatment has been reported for SCI in humans.

View Article and Find Full Text PDF

Skin is the largest organ of the human body functioning as a great primitive defensive barrier against different harmful environmental factors. However, it is damaged through varying injuries such as different wounds, burns, and skin cancers that cause disruption in internal organs and essential mechanisms of the body through inflammation, oxidation, coagulation problems, infection, etc. Melatonin is the major hormone of the pineal gland that is also effective in skin disorders due to strong antioxidant and anti-inflammatory features with additional desirable antiapoptotic, anti-cancer, and antibiotic properties.

View Article and Find Full Text PDF

Cancer remains a challenging disease worldwide, necessitating innovative approaches to better comprehend its underlying molecular mechanisms and devise effective therapeutic strategies. Over the past decade, microRNAs (miRNAs) have emerged as crucial players in cancer progression due to their regulatory roles in various cellular processes. Moreover, the involvement of unwanted soluble receptors has gained increasing attention because they contribute to tumorigenesis or drug resistance by disrupting normal signaling pathways and neutralizing ligands.

View Article and Find Full Text PDF

One of the most challenging problems of the current treatments of neurodegenerative diseases is related to the permeation and access of most therapeutic agents to the central nervous system (CNS), prevented by the blood-brain barrier (BBB). Recently, intranasal (IN) delivery has opened new prospects because it directly delivers drugs for neurological diseases into the brain via the olfactory route. Recently, PLGA-based nanocarriers have attracted a lot of interest for IN delivery of drugs.

View Article and Find Full Text PDF
Article Synopsis
  • * There’s a push for developing stable formulations of statins using nanotechnology to enhance their effectiveness and minimize negative side effects by enabling targeted delivery.
  • * Utilizing nanocarriers could also personalize statin therapy, improving treatment outcomes and reducing off-target effects and toxicity.
View Article and Find Full Text PDF

Objectives: Known as natural nanovesicles, exosomes have attracted increased attention as biocompatible carriers throughout recent years, which can provide appropriate sources for incorporating and transferring drugs to desired cells in order to improve their effectiveness and safety.

Materials And Methods: This study implicates the isolation of mesenchymal stem cells from adipocyte tissue (ADSCs) to acquire a proper amount of exosomes for drug delivery. As the exosomes were separated by ultracentrifugation, SN38 was entrapped into ADSCs-derived exosomes through the combination method of incubation, freeze-thaw, and surfactant treatment (SN38/Exo).

View Article and Find Full Text PDF

Cytokine-mediated cancer therapy has the potential to enhance immunotherapeutic approaches and cancer elimination plans through the endowing of the immune system by providing improved anticancer immunity. Despite the encouraging pioneer studies on interleukins (ILs), the influence of ILs-originated therapeutics is still restricted by a class of potent immunoregulatory cytokines, systemic dose-limiting toxicities, ILs pleiotropy, and administration issues. During previous years, the area of transferring genes encoding immunostimulatory ILs was fundamentally widened to overcome these challenges and expedite ILs-based tumor regression.

View Article and Find Full Text PDF

Introduction: Receptor/ligand pair immune checkpoints are inhibitors that regulate immunity as vital "Don't Find-Me" signals to the adaptive immune system, additionally, the essential goals of anti-cancer therapy. Moreover, the immune checkpoints are involved in treatment resistance in cancer therapy. The immune checkpoints as a signal from "self" and their expression on healthy cells prevent phagocytosis.

View Article and Find Full Text PDF

Malignant melanoma is one of the most aggressive human neoplasms responsible for the majority of skin cancer-related deaths in its advanced stages. Achieving a thorough knowledge of reliable tumor-originated biomarkers and molecular mechanisms can provide many practical approaches and guide the way towards the design of rational curative therapies to improve the survival rate of patients. Cancer cells, including melanoma cells, release high amounts of a broad family of nanovesicles, containing different biochemical messages.

View Article and Find Full Text PDF

Objective: The aim of this study was to investigate the efficacy of mesenchyme stem cells (MSCs) derived from human adipose tissue (hMSCs) as carriers for delivery of galbanic acid (GBA), a potential anticancer agent, loaded into poly (lactic-co-glycolic acid) (PLGA) nanoparticles (nano-engineered hMSCs) against tumor cells.

Materials And Methods: GBA-loaded PLGA nanoparticles (PLGA/GBA) were prepared by single emulsion method and their physicochemical properties were evaluated. Then, PLGA/GBA nanoparticles were incorporated into hMSCs (hMSC/PLGA-GBA) and their migration ability and cytotoxicity against colon cancer cells were investigated.

View Article and Find Full Text PDF

Objectives: The goal of this study was to evaluate the neuroprotective effects of vit B12 on paraquat-induced neurotoxicity.

Materials And Methods: Thirty-six male mice were randomly divided into six groups. Three groups were treated intraperitoneally with paraquat (10 mg/kg) twice a week (with a 3-day interval) for 3 weeks.

View Article and Find Full Text PDF

Objectives: Exosomes became the subject of extensive research in drug delivery approach due to their potential applicability as therapeutic tools for cancer therapy. Thymoquinone (Tq) is an anti-cancer agent due to its great anti-proliferative effect. However, poor solubility and weak bioavailability restrict its therapeutic applications.

View Article and Find Full Text PDF

The emergence of pathogenic viruses is a worldwide frequent cause of diseases and, therefore, the design of treatments for viral infections stands as a significant research topic. Despite many efforts, the production of vaccines is faced with many obstacles and the high rate of viral resistance caused a severe reduction in the efficacy of antiviral drugs. However, the attempt of developing novel natural drugs, as well as the exertion of medicinal plants, may be an applicable solution for the treatment of viral diseases.

View Article and Find Full Text PDF

Thrombin (TB) is classified among human blood coagulation proteins with key functions in hemostasis of blood vessels, wound healing, atherosclerosis, tissue adhesion, etc. Moreover, TB is involved as the main enzyme in the conversion of the fibrinogen to fibrin. Given the importance of TB detection in the clinical area, the development of innovative methods can considerably improve TB detection.

View Article and Find Full Text PDF

Objective: Pulmonary fibrosis is an important complication of subacute paraquat (PQ) poisoning. Here, we reported a novel nanotherapeutic platform for PQ-induced pulmonary fibrosis in animal inhalation models using simvastatin (SV)-loaded into poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs).

Methods And Materials: Eight inhalations of normal saline, PQ (24 mg/kg), PQ plus SV (20 mg/kg), PQ plus SV-loaded PLGA NPs at doses of 5, 10 or 20 mg/kg or PQ plus PLGA NPs were given to rats.

View Article and Find Full Text PDF

A facile method was designed that can specifically deliver CRISPR/Cas9 into target cells nuclei and reduce the off-target effects. A multifunctional delivery vector for FOXM1 knockout was composed by integration of cell targeting polymer (hyaluronic acid) and cell and nuclear targeting group (AS1411 aptamer) on the surface of nanoparticles formed by genome editing plasmid and chitosan (CS) as the core (Apt-HA-CS-CRISPR/Cas9). The data of cytotoxicity experiment and western blot confirmed this issue.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Saffron (Crocus sativus L.) has been introduced as a potential promising natural antioxidant with anti-obesity properties. In Persian Medicine, saffron has been used to control appetite and obesity.

View Article and Find Full Text PDF

Objectives: Dental pulp stem cells (DPSCs) can differentiate into functional neurons and have the potential for cell therapy in neurological diseases. Granulocyte colony-stimulating factor (G-CSF) is a glycoprotein family shown neuroprotective effect in models of nerve damage.we evaluated the protective effects of G-CSF, conditioned media from DPSCs (DPSCs-CM) and conditioned media from transfected DPSCs with plasmid encoding G-CSF (DPSC-CMT) on SH-SY5Y exposed to CoCl as a model of hypoxia-induced neural damage.

View Article and Find Full Text PDF

Interleukin 12 (IL-12) is considered as an important molecule for cancer immunotherapy with significant roles in hindering tumor activity, mostly mediated by tumor-associated macrophages and anti-angiogenic factors. Mesenchymal stem cells (MSCs) have been come out as promising carriers to increase the accumulation of drug/gene in tumor sites. As a vehicle, MSCs have various advantages, including tumor-specific propensity and migratory ability; however, they have limited transfection efficiency, compared to other cells.

View Article and Find Full Text PDF

Stem cells can be used to repair dysfunctional and injured (or cancerous) tissues by delivering therapeutics. However, in comparison with other cells, it is harder to transfect drugs or genes into stem cells. Dendrimers have been considered as efficient vectors to deliver both genes and drugs to stem cells due to their unique properties including adjustable molecular weight and size, low toxicity, high loading capacity, and having multiple peripheral chemical agents which can be functionalized to improve deliverance efficiency.

View Article and Find Full Text PDF

Cell-based delivery system is a promising strategy to protect therapeutic agents from the immune system and provide targeted delivery. Mesenchymal stem cells (MSCs) have recently been introduced as an encouraging vehicle in cell-based gene therapy due to their unique features including tumor-tropic property and migratory ability. However, gene transfer into MSCs is limited due to low efficiency and cytotoxicity of carriers.

View Article and Find Full Text PDF

Type 1 diabetes, has been recognized as an autoimmune disease. Like other immunological conditions, regulation of immune response is a key strategy to control the autoimmunity in diabetic patients. Mesenchymal stem cells have been shown to have a distinct potential in modulating the immune reactions.

View Article and Find Full Text PDF

Exosomes are biological nano-sized vesicles (~30-200 nm in diameter) that are produced by a wide range of cells and play several roles in cell-cell communications. These vesicles contain membrane and cytoplasmic components of producing cells. Mesenchymal stem cells (MSCs) are the ideal producer of exosomes.

View Article and Find Full Text PDF