Publications by authors named "Zahra Keshavarz Motamed"

Aims: Aortic valve calcification scoring plays an important role in predicting outcomes of transcatheter aortic valve replacement (TAVR). However, the impact of relative calcific density and its causal effect on peri-procedural complications due to sub-optimal valve expansion remains limited. This study aims to investigate the prognostic power of quantifying regional calcification in the device landing zone in the context of peri-procedural events and post-procedural complications based on pre-operative contrast computed tomography angiography (CCTA) images.

View Article and Find Full Text PDF

Background: Procedural planning for transcatheter aortic valve replacement (TAVR) is routinely performed using contrast computed tomography (CT) in patients with severe aortic stenosis (AS). Despite its potential, little investigation has been done into the possibility of aortic valve calcification (AVC) scoring in contrast-enhanced CT. Contrast CT has superior spatial and contrast resolution compared to the non-contrast Agatston score protocol, which would allow for development of better pattern and distribution descriptors of calcific lesions in the aortic valve (AV).

View Article and Find Full Text PDF

Background: Despite the demonstrated benefits of transcatheter aortic valve replacement (TAVR), subclinical leaflet thrombosis and hypoattenuated leaflet thickening are commonly seen as initial indications of decreased valve durability and augmented risk of transient ischemic attack.

Methods: We developed a multiscale patient-specific computational framework to quantify metrics of global circulatory function, metrics of global cardiac function, and local cardiac fluid dynamics of the aortic root and coronary arteries.

Results: Based on our findings, TAVR might be associated with a high risk of blood stagnation in the neo-sinus region due to the lack of sufficient blood flow washout during the diastole phase (e.

View Article and Find Full Text PDF

In recent years, transcatheter aortic valve replacement (TAVR) has become the leading method for treating aortic stenosis. While the procedure has improved dramatically in the past decade, there are still uncertainties about the impact of TAVR on coronary blood flow. Recent research has indicated that negative coronary events after TAVR may be partially driven by impaired coronary blood flow dynamics.

View Article and Find Full Text PDF

Background Despite the proven benefits of transcatheter aortic valve replacement (TAVR) and its recent expansion toward the whole risk spectrum, coronary artery disease is present in more than half of the candidates for TAVR. Many previous studies do not focus on the longer-term impact of TAVR on coronary arteries, and hemodynamic changes to the circulatory system in response to the anatomical changes caused by TAVR are not fully understood. Methods and Results We developed a multiscale patient-specific computational framework to examine the effect of TAVR on coronary and cardiac hemodynamics noninvasively.

View Article and Find Full Text PDF

Given the associated risks with transcatheter aortic valve replacement (TAVR), it is crucial to determine how the implant will affect the valve dynamics and cardiac function, and if TAVR will improve or worsen the outcome of the patient. Effective treatment strategies, indeed, rely heavily on the complete understanding of the valve dynamics. We developed an innovative Doppler-exclusive non-invasive computational framework that can function as a diagnostic tool to assess valve dynamics in patients with aortic stenosis in both pre- and post-TAVR status.

View Article and Find Full Text PDF

The increasing number of deaths from cardiovascular diseases has become a substantial concern in both developed and underdeveloped countries. Rapid and on-site monitoring of this disease is urgently important to control, prevent and make awareness of public health. Recently, a lot of focus has been placed on nanomaterials and modify these nanomaterials have been explored to detect cardiac biomarkers.

View Article and Find Full Text PDF

Aortic stenosis (AS) is an acute and chronic cardiovascular disease and If left untreated, 50% of these patients will die within two years of developing symptoms. AS is characterized as the stiffening of the aortic valve leaflets which restricts their motion and prevents the proper opening under transvalvular pressure. Assessments of the valve dynamics, if available, would provide valuable information about the patient's state of cardiac deterioration as well as heart recovery and can have incredible impacts on patient care, planning interventions and making critical clinical decisions with life-threatening risks.

View Article and Find Full Text PDF

Transcatheter aortic valve replacement (TAVR) is a frequently used minimally invasive intervention for patient with aortic stenosis across a broad risk spectrum. While coronary artery disease (CAD) is present in approximately half of TAVR candidates, correlation of post-TAVR complications such as paravalvular leakage (PVL) or misalignment with CAD are not fully understood. For this purpose, we developed a multiscale computational framework based on a patient-specific lumped-parameter algorithm and a 3-D strongly-coupled fluid-structure interaction model to quantify metrics of global circulatory function, metrics of global cardiac function and local cardiac fluid dynamics in 6 patients.

View Article and Find Full Text PDF

Accurate hemodynamic analysis is not only crucial for successful diagnosis of coarctation of the aorta (COA), but intervention decisions also rely on the hemodynamics assessment in both pre and post intervention states to minimize patient risks. Despite ongoing advances in surgical techniques for COA treatments, the impacts of extra-anatomic bypass grafting, a surgical technique to treat COA, on the aorta are not always benign. Our objective was to investigate the impact of bypass grafting on aortic hemodynamics.

View Article and Find Full Text PDF

Background Despite ongoing advances in surgical techniques for coarctation of the aorta (COA) repair, the long-term results are not always benign. Associated mixed valvular diseases (various combinations of aortic and mitral valvular pathologies) are responsible for considerable postoperative morbidity and mortality. We investigated the impact of COA and mixed valvular diseases on hemodynamics.

View Article and Find Full Text PDF

Cardiovascular disease is a deadly global health crisis that carries a substantial financial burden. Innovative treatment and management of cardiovascular disease straddles medicine, personalized hemodynamic modeling, machine learning, and modern imaging to help improve patient outcomes and reduce the economic impact. Hemodynamic modeling offers a non-invasive method to provide clinicians with new pre- and post- procedural metrics and aid in the selection of treatment options.

View Article and Find Full Text PDF

Due to the high individual differences in the anatomy and pathophysiology of patients, planning individualized treatment requires patient-specific diagnosis. Indeed, hemodynamic quantification can be immensely valuable for accurate diagnosis, however, we still lack precise diagnostic methods for numerous cardiovascular diseases including complex (and mixed) valvular, vascular, and ventricular interactions (C3VI) which is a complicated situation made even more challenging in the face of other cardiovascular pathologies. Transcatheter aortic valve replacement (TAVR) is a new less invasive intervention and is a growing alternative for patients with aortic stenosis.

View Article and Find Full Text PDF

One of the most common acute and chronic cardiovascular disease conditions is aortic stenosis, a disease in which the aortic valve is damaged and can no longer function properly. Moreover, aortic stenosis commonly exists in combination with other conditions causing so many patients suffer from the most general and fundamentally challenging condition: complex valvular, ventricular and vascular disease (C3VD). Transcatheter aortic valve replacement (TAVR) is a new less invasive intervention and is a growing alternative for patients with aortic stenosis.

View Article and Find Full Text PDF

Coarctation of the aorta (COA) is a congenital narrowing of the proximal descending aorta. Although accurate and early diagnosis of COA hinges on blood flow quantification, proper diagnostic methods for COA are still lacking because fluid-dynamics methods that can be used for accurate flow quantification are not well developed yet. Most importantly, COA and the heart interact with each other and because the heart resides in a complex vascular network that imposes boundary conditions on its function, accurate diagnosis relies on quantifications of the global hemodynamics (heart-function metrics) as well as the local hemodynamics (detailed information of the blood flow dynamics in COA).

View Article and Find Full Text PDF

Hemodynamics quantification is critically useful for accurate and early diagnosis, but we still lack proper diagnosticmethods for many cardiovascular diseases. Furthermore, as most interventions intend to recover the healthy condition, the ability to monitor and predict hemodynamics following interventions can have significant impacts on saving lives. Predictive methods are rare, enabling prediction of effects of interventions, allowing timely and personalized interventions and helping critical clinical decision making about life-threatening risks based on quantitative data.

View Article and Find Full Text PDF

Background Mixed valvular disease (MVD), mitral regurgitation (MR) from pre-existing disease in conjunction with paravalvular leak (PVL) following transcatheter aortic valve replacement (TAVR), is one of the most important stimuli for left ventricle (LV) dysfunction, associated with cardiac mortality. Despite the prevalence of MVD, the quantitative understanding of the interplay between pre-existing MVD, PVL, LV, and post-TAVR recovery is meager. Methods and Results We quantified the effects of MVD on valvular-ventricular hemodynamics using an image-based patient-specific computational framework in 72 MVD patients.

View Article and Find Full Text PDF

Aortic stenosis (AS) management is classically guided by symptoms and valvular metrics. However, the natural history of AS is dictated by coupling of the left ventricle, aortic valve, and vascular system. We investigated whether metrics of ventricular and vascular state add to the appreciation of AS state above valve gradient alone.

View Article and Find Full Text PDF

Objectives: This study sought to investigate the impact of transcatheter intervention on left ventricular function and aortic hemodynamics in patients with mild coarctation of the aorta (COA).

Background: The optimal method and timing of transcatheter intervention for COA remains unclear, especially when the severity of COA is mild (peak-to-peak transcoarctation pressure gradient <20 mm Hg). Debate rages regarding the risk/benefit ratio of intervention versus long-term effects of persistent minimal gradient in this heterogeneous population with differing blood pressures, ventricular function, and peripheral perfusion.

View Article and Find Full Text PDF

The initial stages of fetal development require that blood oxygenation occur through the placenta rather than the non functioning lungs. As a result the fetal circulatory system develops a temporary shunt between the aorta and pulmonary artery, known as the ductus arteriosis (DA). This study utilizes CFD techniques to analyze the flow behavior in the aortic isthmus neighboring the DA.

View Article and Find Full Text PDF

Early detection and accurate estimation of the extent of coarctation of the aorta (COA) is critical to long-term outcome. Peak-to-peak trans-coarctation pressure gradient (PKdP) higher than 20mmHg is an indication for interventional/surgical repair. Patients with COA have reduced proximal and distal aortic compliances.

View Article and Find Full Text PDF