Microfluidic chips are powerful tools for investigating numerous variables including chemical and physical parameters on protein aggregation. This study investigated the aggregation of bovine serum albumin (BSA) in two different systems: a vial-based static system and a microfluidic chip-based dynamic system in which BSA aggregation was induced successfully. BSA aggregation induced in a microfluidic chip on a timescale of seconds enabled a dynamic investigation of the forces driving the aggregation process.
View Article and Find Full Text PDFA high-performance non-enzymatic glucose sensor based on hybrid metal-oxides is proposed. Dumbbell-shaped double-shelled hollow nanoporous CuO/ZnO microstructures (CuO/ZnO-DSDSHNM) were prepared via the hydrothermal method using pluronic F-127 as a surfactant. This structure is studied by various physicochemical characterizations such as scanning electron microscopy, X-ray diffraction spectroscopy, inductively coupled plasma atomic emission spectroscopy, elemental mapping techniques, X-ray photoelectron spectroscopy, and transmission electron microscopy.
View Article and Find Full Text PDF