Klotho is an anti-aging protein whose deletion significantly reduces lifespan in mice, while its over-expression increases lifespan. Klotho is a type-I transmembrane protein that is N-glycosylated at eight positions within its ectodomain. Our study demonstrates that N-glycosylation or mutation at position N614, but not at N161, N285, or N346 in mouse Klotho, is critically involved in the transport of Klotho out of the endoplasmic reticulum (ER).
View Article and Find Full Text PDFA new variant of Renilla luciferase, named Met C-SRLuc 8, was obtained from a random mutagenesis library and expressed in Escherichia coli BL21 (DE3) plys and purified. The results of the enzyme's binding affinity, kinetic stability, and bioinformatic studies demonstrated that leucine 59, located within the hot-spot foldon in the N-terminal domain of the protein, plays a significant role in the stability and activity of Renilla luciferase. These findings may facilitate the engineering of different variants of this enzyme to achieve thermally stable versions for various biotechnological applications.
View Article and Find Full Text PDFPoly(ADP-ribose) polymerase-1 (PARP1) binds DNA lesions to catalyse poly(ADP-ribosyl)ation (PARylation) using NAD+ as a substrate. PARP1 plays multiple roles in cellular activities, including DNA repair, transcription, cell death, and chromatin remodelling. However, whether these functions are governed by the enzymatic activity or scaffolding function of PARP1 remains elusive.
View Article and Find Full Text PDFPoly(ADP-ribosyl)ation (PARylation) is catalysed by poly(ADP-ribose) polymerases (PARPs, also known as ARTDs) and then rapidly removed by degrading enzymes. Poly(ADP-ribose) (PAR) is produced from PARylation and provides a delicate and spatiotemporal interaction scaffold for numerous target proteins. The PARylation system, consisting of PAR synthesizers and erasers and PAR itself and readers, plays diverse roles in the DNA damage response (DDR), DNA repair, transcription, replication, chromatin remodeling, metabolism, and cell death.
View Article and Find Full Text PDFRenilla Luciferase (RLuc) is a blue light emitter protein which can be applied as a valuable tool in medical diagnosis. But due to lack of the crystal structure of RLuc-ligand complex, the functional motions and catalytic mechanism of this enzyme remain largely unknown. In the present study, the active site properties and the ligand-receptor interactions of the native RLuc and its red-shifted light emitting variant (Super RLuc 8) were investigated using molecular docking approach, molecular dynamics (MD) analysis, and MM-PBSA method.
View Article and Find Full Text PDFRenilla luciferase is a bioluminescent enzyme which is broadly used as a reporter protein in molecular biosensors. In this study, a novel luciferase with desired light emission wavelength and thermostability is reported. The results indicated that the new luciferase, namely super RLuc8, had a red-shifted spectrum and showed stable light emission.
View Article and Find Full Text PDFRenilla luciferase (RLuc), also known as Renilla-luciferin 2-monooxygenase, is a light producing enzyme used in many biotechnological applications such as bioreporters. However, its kinetics stability -especially at higher temperatures- is a limiting factor for developing thermostable bioreporters. The aim of this study was to improve the stability of super Renilla luciferase 8 (SRLuc 8) which is a red-emitter variety of RLuc at higher temperatures, by introduction of a disulfide bridge into its structure.
View Article and Find Full Text PDF