The effect of surface modification on enhancing the magnetic heating behavior of magnetic nano fluids were investigated, for this purpose FeO nanoparticles were synthesized using co-precipitation method and surface modification was done using citric acid, ascorbic acid, tetraethyl orthosilicate (TEOS), polyvinyl alcohol (PVA) and polyethylene glycol (PEG). Experimental heating tests using AC magnetic field were done in the frequency of 100 kHz and different magnetic field (H) intensities. Theoretically the specific absorption rate (SAR) in magnetic nano fluids is independent of nanoparticles concentration but the experimental results showed different behavior.
View Article and Find Full Text PDFTherapeutic approaches for acute myeloid leukemia (AML) have remained largely unchanged for over 40 years and cytarabine and an anthracycline (e.g., daunorubicin) backbone is the main induction therapy for these patients.
View Article and Find Full Text PDFCancer stem cells (CSCs) play an essential role in cancer development, metastasis, relapse, and resistance to treatment. In this article, the effects of three synthesized ZnO nanofluids on proliferation, apoptosis, and stemness markers of breast cancer stem-like cells are reported. The antiproliferative and apoptotic properties of ZnO nanoparticles were evaluated on breast cancer stem-like cell-enriched mammospheres by MTS assay and flowcytometry, respectively.
View Article and Find Full Text PDFThe advent of tyrosine kinase inhibitors in the therapeutic protocols of chronic myeloid leukemia (CML) was a revolution in the treatment strategies that guaranteed the achievement of complete remission for patients. However, due to different mutations bypassing the efficacy of Imatinib, novel and more effective treatments are indeed required for the treatment of CML. Our study declared that the combination of synthesized ZnO/CNT@FeOnanocomposite with Imatinib decreased survival of CML-derived K562 cells, probably through inducing reactive oxygen species-mediated apoptosis.
View Article and Find Full Text PDFThe advent of nanoparticles revolutionised the drug delivery systems in human diseases; however, their prominent role was highlighted in the cancer-based therapies, where this technology could specifically target cancer cells. Herein, we decided to combine two nanoparticles FeO and ZnO to fabricate a new anti-cancer nanocomposite. Noteworthy, hydroxylated carbon nanotube (CNT) was used to increase the water-solubility of the compound, improving its uptake by malignant cells.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
October 2019
Non-spherical structures are beneficial to advance drug delivery effectiveness compared with common spherical ones, due to increased drug loading capability, improved bonding to a vascular wall, enhanced cellular uptake efficacy and prolonged circulation times. In this study, flower-like Zinc oxide-βcyclodextrin (βCD) nanostructures functionalized by 3-mercaptopropionic acid (MPA) as a non-spherical delivery system was successfully synthesized for aqueous delivery of curcumin (CUR) to enhance its targeting, bioavailability, and release profile. Terminal carboxyl functional groups were used for the conjugation of folic acid (FA) with the aim of active targeting to folate overexpressing breast cancer cells.
View Article and Find Full Text PDFGreenhouse gas emissions have increased dramatically over the past years and had a significant impact on global warming. This study investigates the modification of multi-walled carbon nanotubes (MWCNTs) with diamine precursor to improve the carbon dioxide adsorption capacity. To achieve this goal, pristine multi-walled CNTs were functionalized in a two-step process.
View Article and Find Full Text PDFNanoformulations derived from fine porous ZnO quantum dot nanoparticles (QD NPs) can offer strong potential medical applications; especially in cancer therapy. ZnO QD NPs was synthesized by sol-gel hydrothermal process, fast cold quenching and further smart surface functionalization methods to obtain ultrasmall size (1-4 nm) NPs. ZnO nanopolymer, a wetting agent, PEG co-solvent and water/oil emulsion stabilizer were considered in our nanofluid formulation.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
October 2017
Inherent biocompatibility and stability of zinc oxide nanoparticles (ZnO-NPs) and their biomedical potentials make them an emerging candidate for drug delivery. The aim of this study was to develop and assess a simple procedure for surface functionalization of ZnO-NPs by 3-mercaptopropionic acid (MPA) for water-soluble curcumin delivery. Carboxyl-terminated ZnO nanoparticles were successfully made using ZnCl and NaOH in the presence of MPA.
View Article and Find Full Text PDFArtif Cells Nanomed Biotechnol
December 2017
Novel formulations of nanocomposites derived from ZnO nanoparticles have provided potential biomedical applications as a new strategy for treatment of breast cancer. In this research, two types of ZnO nanomaterials were synthesized by sol-gel hydrothermal process and co-precipitation containing fast quenching and also surface modification methods. The cytotoxic effects on growth of the breast cancer cell lines MCF-7 were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2016
Construction of surfaces with the capability of repelling both water and oil is a challenging issue. We report the superamphiphobic properties of mineral surfaces coated with nanofluids based on synthesized Co-doped and Ce-doped Barium Strontium Titanate (CoBST and CeBST) nanoparticles and fluorochemicals of trichloro(1H,1H,2H,2H-perfluorooctyl)silane (PFOS) and polytetrafluoroethylene (PTFE). Coating surfaces with these nanofluids provides both oil (with surface tensions as low as 23 mN/m) and water repellency.
View Article and Find Full Text PDFAs a significant discovery in the 20th century, carbon nanotubes are attracting particular attention in many unique fields such as electronics, catalysts, hydrogen storage composites, gas sensors, drug delivery, medical diagnostics, therapeutics and nanofluids. In this project, we focus on self-assembled synthetic special natural protein alpha-lactalbumin nanotubes with different (straight, waved, coiled, regularly bent, branched, beaded) shapes, nanospherical particles, nanorods, nanowires, nanopores, polyhedral (hexagonal network, spherical, cubic) nanostructures, nanochannels, nanofibers, nanosheets, nanoleaves, nanowave branched structures, nanobeads, nanoflowers, nanocapsules, novel nano-hybrids consisting of tubes and rods (new core-shell), nanocrystal shapes, apiary or cobweb, branched nanotubes with Y-junctions, nano membrane structures, nano sweep symmetrical shape, nano sponge structures, nano helical homogeneous structures and nano perpendicular and horizontal stable hollow single-walled natural protein nanotubes (NPNTs). These were successfully synthesized by the chemical hydrolysis sol--gel method and partial biochemical enzymatic hydrolysis by cleavage sites (Asp-X and Glu-X) of the milk protein a-lactalbumin by using various organic surfactants, pH controller functions and divalent metallic salt ions as a binding site or ions ligand formation between two bio-based building blocks to form remarkable various new morphologies in appearance of nanoemulsions and clear green nanofluids, for application in the diet nutrition food science and pharmaceutical industry.
View Article and Find Full Text PDF