Multi-Target approach is particularly promising way to drug discovery against Alzheimer's disease. In the present study, we synthesized a series of compounds comprising the carbazole backbone linked to the benzyl piperazine, benzyl piperidine, pyridine, quinoline, or isoquinoline moiety through an aliphatic linker and evaluated as cholinesterase inhibitors. The synthesized compounds showed IC values of 0.
View Article and Find Full Text PDFTwo series of novel coumarin derivatives, substituted at 3 and 7 positions with aminoalkoxy groups, are synthesized, characterized, and screened. The effect of amine substituents and the length of cross-linker are investigated in acetyl- and butyrylcholinesterase (AChE and BuChE) inhibition. Target compounds show moderate to potent inhibitory activities against AChE and BuChE.
View Article and Find Full Text PDFA novel series of benzylpyridinium-based benzoheterocycles (benzimidazole, benzoxazole or benzothiazole) were designed as potent acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitors. The title compounds 4a-q were conveniently synthesized via condensation reaction of 1,2-phenylenediamine, 2-aminophenol or 2-aminothiophenol with pyridin-4-carbalehyde, followed by N-benzylation using various benzyl halides. The results of in vitro biological assays revealed that most of them, especially 4c and 4g, had potent anticholinesterase activity comparable or more potent than reference drug, donepezil.
View Article and Find Full Text PDFA novel series of coumarin-lipoic acid conjugates were synthesized via cycloaddition click reaction to find out new multi-target-directed ligands (MTDLs) for treatment of Alzheimer's disease (AD). All of synthesized compounds were screened for neuroprotective and anti-cholinesterase activities. Based on primary screening, two compounds (5 and 11) were subjected to further biological evaluations.
View Article and Find Full Text PDF