Publications by authors named "Zahorsky-Reeves J"

Host-guest interactions represent a growing research area with recent work demonstrating the ability to chemically manipulate both host molecules as well as guest molecules to vary the type and strength of bonding. Much less is known about the interactions of the guest molecules and hybrid materials containing similar chemical features to typical macrocyclic hosts. This work uses in vitro and in vivo kinetic analyses to investigate the interaction of -dodecahydrododecaborate derivatives with ferumoxytol, an iron oxide nanoparticle with a carboxylated dextran coating.

View Article and Find Full Text PDF

Short-chain cyanoacrylates (SCCA), such as ethyl-2-cyanoacrylate (KrazyGlue, Aron Alpha, Columbus, OH) are commonly used as commercial fast-acting glues. Although once used in clinical medicine as skin adhesives, these products caused tissue toxicity and thus their use in live tissue was discontinued. SCCA were replaced by longer-chain versions (LCCA), such as butyl-cyanoacrylate (Vetbond, 3M, St Paul, Minnesota), which were found to be less toxic than the short-chain formulations.

View Article and Find Full Text PDF

Background: Recent work has indicated a role for anti-Gal alpha 1-3Gal (Gal) and anti-non-Gal xenoantibodies in the primate humoral rejection response against human-decay accelerating factor (hDAF) transgenic pig organs. Our laboratory has shown that anti-porcine xenograft antibodies in humans and non-human primates are encoded by a small number of germline IgV(H) progenitors. In this study, we extended our analysis to identify the IgV(H) genes encoding xenoantibodies in immunosuppressed cynomolgus monkeys (Macaca fascicularis) transplanted with hDAF-transgenic pig organs.

View Article and Find Full Text PDF

Background: The use of porcine cells and organs as a source of xenografts for human patients would vastly increase the donor pool; however, both humans and Old World primates vigorously reject pig tissues due to xenoantibodies that react with the polysaccharide galactose alpha (1,3) galactose (alphaGal) present on the surface of many porcine cells. We previously examined the xenoantibody response in patients exposed to porcine hepatocytes via treatment(s) with bioartficial liver devices (BALs), composed of porcine cells in a support matrix. We determined that xenoantibodies in BAL-treated patients are predominantly directed at porcine alphaGal carbohydrate epitopes, and are encoded by a small number of germline heavy chain variable region (VH) immunoglobulin genes.

View Article and Find Full Text PDF

The major immunological barrier that prevents the use of wild-type pig xenografts as an alternative source of organs for human xenotransplantation is antibody-mediated rejection. In this study, we identify the immunoglobulin variable region heavy (IgV(H)) chain genes encoding xenoantibodies to porcine heart and fetal porcine islet xenografts in non-immunosuppressed rhesus monkeys. We sought to compare the IgV(H) genes encoding xenoantibodies to porcine islets and solid organ xenografts.

View Article and Find Full Text PDF

CXCR3 chemokines are of particular interest because of their potential involvement in a variety of inflammatory diseases, including the rejection of organ transplants. Although the rat is one of the most appropriate animals for using to study transplantation biology, the structural and functional characteristics of CXCL9 [monokine induced by interferon-gamma (Mig)] in this experimental model have not been described. Therefore, we recently conducted a series of experiments to identify and characterize the rat CXCL9 gene.

View Article and Find Full Text PDF

The scurfy (sf) murine mutation causes severe lymphoproliferation, which results in death of hemizygous males (sf/Y) by 22 to 26 days of age. The CD4+ T cells are crucial mediators of this disease. Recent publications have not only identified this mutation as the genetic equivalent of the human disease X-linked neonatal diabetes mellitus, enteropathy, and endocrinopathy syndrome, but also have indicated that the defective protein-scurfin-is a new forkhead/winged-helix protein with a frameshift mutation, resulting in a product without the functional forkhead.

View Article and Find Full Text PDF

The scurfy (sf) murine mutation results in a rapidly fatal lymphoproliferative disease, causing death by 26 days. Mature CD4+ T cells which tested hyperresponsive to T cell receptor (TCR) stimulation are involved. When sf was bred onto a transgenic line (DO11.

View Article and Find Full Text PDF

This report presents new findings regarding a recessive insertional mutation in the transgenic line TgN2742Rpw that causes deafness and circling behavior in mice homozygous for the mutation. The mutant locus was mapped to a region on mouse chromosome 10 close to three spontaneous recessive mutations causing deafness: Ames waltzer (av), Waltzer (v), and Jackson circler (jc). Complementation testing revealed that the TgN2742Rpw mutation is allelic with av.

View Article and Find Full Text PDF