Publications by authors named "Zahid Hasan"

Article Synopsis
  • Cancer is a major global health issue, and extracellular vesicles (EVs), particularly exosomes, are important for early cancer detection and monitoring since they contain valuable information from tumor cells.
  • Exosomes released by tumor cells contribute to processes like tumor growth, spread, and resistance to treatment, and they are produced in greater quantities than those from normal cells.
  • The findings of this review underline the potential of exosomal components as diagnostic and prognostic tools, potentially enhancing cancer management and patient care.
View Article and Find Full Text PDF

Prediction and discovery of new materials with desired properties are at the forefront of quantum science and technology research. A major bottleneck in this field is the computational resources and time complexity related to finding new materials from ab initio calculations. In this work, an effective and robust deep learning-based model is proposed by incorporating persistent homology with graph neural network which offers an accuracy of and an F1 score of in classifying topological versus non-topological materials, outperforming the other state-of-the-art classifier models.

View Article and Find Full Text PDF

Magnetotransport, the response of electrical conduction to external magnetic field, acts as an important tool to reveal fundamental concepts behind exotic phenomena and plays a key role in enabling spintronic applications. Magnetotransport is generally sensitive to magnetic field orientations. In contrast, efficient and isotropic modulation of electronic transport, which is useful in technology applications such as omnidirectional sensing, is rarely seen, especially for pristine crystals.

View Article and Find Full Text PDF

The interplay of topology, magnetism, and correlations gives rise to intriguing phases of matter. In this study, through state-of-the-art angle-resolved photoemission spectroscopy, density functional theory, and dynamical mean-field theory calculations, we visualize a fourfold degenerate Dirac nodal line at the boundary of the bulk Brillouin zone in the antiferromagnet YMnGe. We further demonstrate that this gapless, antiferromagnetic Dirac nodal line is enforced by the combination of magnetism, space-time inversion symmetry, and nonsymmorphic lattice symmetry.

View Article and Find Full Text PDF

Introduction: The dysbiosis of vaginal microbiota is recognized as a potential underlying factor contributing to infertility in women. This study aimed to compare the vaginal microbiomes of infertile and fertile women to investigate their relationship with infertility.

Methods: Metagenomic analysis was conducted on samples from 5 infertile and 5 fertile individuals using both amplicon 16S and metagenomics shotgun sequencing methods.

View Article and Find Full Text PDF
Article Synopsis
  • - The study observes a new type of order, called intra-unit-cell nematic order, in the kagome metal ScVSn, which breaks the crystal's rotational symmetry.
  • - Using advanced scanning techniques, researchers found stripe-like patterns and specific electron behavior that demonstrate this symmetry breaking and the deformation of the Fermi surface.
  • - This research connects the concepts of electronic nematicity with kagome physics, offering insights into how symmetry-broken phases can emerge in materials with correlated electrons.
View Article and Find Full Text PDF
Article Synopsis
  • Topology and interactions are key concepts in understanding quantum matter, leading to three main research directions: competition between interactions, interplay of interactions with topology, and resulting novel phases from combined topological orders.
  • This study reveals a unique 'hybrid' topological phase in arsenic using advanced techniques, demonstrating both strong and higher-order topology through specific surface features.
  • The findings suggest potential for exploring and utilizing different band topologies and their conduction properties in future quantum or nano-devices.
View Article and Find Full Text PDF

Charge density wave (CDW) orders in vanadium-based kagome metals have recently received tremendous attention, yet their origin remains a topic of debate. The discovery of ScVSn, a bilayer kagome metal featuring an intriguing [Formula: see text] CDW order, offers a novel platform to explore the underlying mechanism behind the unconventional CDW. Here, we combine high-resolution angle-resolved photoemission spectroscopy, Raman scattering and density functional theory to investigate the electronic structure and phonon modes of ScVSn.

View Article and Find Full Text PDF

Introduction: Breast cancer stands as the second most deadly form of cancer among women worldwide. Early diagnosis and treatment can significantly mitigate mortality rates.

Purpose: The study aims to classify breast ultrasound images into benign and malignant tumors.

View Article and Find Full Text PDF

Nowadays, perovskite materials are well known for electronics and optoelectronics applications. We have investigated a potential candidate for those applications to compare the applicability in optoelectronics, photorefractive and photovoltaic (PV) devices. The systematic comparative study of the structural, electronic, optical, mechanical, and thermodynamic properties of pure BaTiO and Ca doped BaTiO (BaCaTiO where x = 0.

View Article and Find Full Text PDF

Shigellaa Gram-negative, non-motile bacillus, is the primary causative agent of the infectious disease shigellosis, which kills 1.1 million people worldwideevery year. The children under the age of five are primarily the victims of this disease.

View Article and Find Full Text PDF

Recent experiments report a charge density wave (CDW) in the antiferromagnet FeGe, but the nature of the charge ordering and the associated structural distortion remains elusive. We discuss the structural and electronic properties of FeGe. Our proposed ground state phase accurately captures atomic topographies acquired by scanning tunneling microscopy.

View Article and Find Full Text PDF

The spacetime light cone is central to the definition of causality in the theory of relativity. Recently, links between relativistic and condensed matter physics have been uncovered, where relativistic particles can emerge as quasiparticles in the energy-momentum space of matter. Here, we unveil an energy-momentum analogue of the spacetime light cone by mapping time to energy, space to momentum, and the light cone to the Weyl cone.

View Article and Find Full Text PDF

We propose and study a two-dimensional phase of shifted charge density waves (CDW), which is constructed from an array of weakly coupled 1D CDW wires whose phases shift from one wire to the next. We show that the fully gapped bulk CDW has topological properties, characterized by a nonzero Chern number, that imply edge modes within the bulk gap. Remarkably, these edge modes exhibit spectral pseudoflow as a function of position along the edge, and are thus dual to the chiral edge modes of Chern insulators with their spectral flow in momentum space.

View Article and Find Full Text PDF

The quasi-two-dimensional kagome materials AVSb (A = K, Rb, Cs) were found to be a prime example of kagome superconductors, a new quantum platform to investigate the interplay between electron correlation effects, topology and geometric frustration. In this review, we report recent progress on the experimental and theoretical studies of AVSb and provide a broad picture of this fast-developing field in order to stimulate an expanded search for unconventional kagome superconductors. We review the electronic properties of AVSb, the experimental measurements of the charge density wave state, evidence of time-reversal symmetry breaking and other potential hidden symmetry breaking in these materials.

View Article and Find Full Text PDF

Novel topological phases of matter are fruitful platforms for the discovery of unconventional electromagnetic phenomena. Higher-fold topology is one example, where the low-energy description goes beyond standard model analogs. Despite intensive experimental studies, conclusive evidence remains elusive for the multigap topological nature of higher-fold chiral fermions.

View Article and Find Full Text PDF

The interplay of nontrivial topology and superconductivity in condensed matter physics gives rise to exotic phenomena. However, materials are extremely rare where it is possible to explore the full details of the superconducting pairing. Here, we investigate the momentum dependence of the superconducting gap distribution in a novel Dirac material PdTe.

View Article and Find Full Text PDF
Article Synopsis
  • The bulk-boundary correspondence is a key concept in topological quantum materials, highlighting differences between the insulating bulk and gapless boundary states in materials like quantum spin Hall insulators.
  • This study employs mid-infrared absorption and pump-probe micro-spectroscopy to investigate the optical responses of BiBr, a new quantum spin Hall insulator, revealing strong boundary state absorption while bulk absorption is minimal due to an insulating gap.
  • Findings show that boundary states have a significantly longer carrier lifetime (about one nanosecond) than typical topological materials, indicating the potential for exploring optical properties in topological optoelectronics.
View Article and Find Full Text PDF

A kagome lattice naturally features Dirac fermions, flat bands and van Hove singularities in its electronic structure. The Dirac fermions encode topology, flat bands favour correlated phenomena such as magnetism, and van Hove singularities can lead to instabilities towards long-range many-body orders, altogether allowing for the realization and discovery of a series of topological kagome magnets and superconductors with exotic properties. Recent progress in exploring kagome materials has revealed rich emergent phenomena resulting from the quantum interactions between geometry, topology, spin and correlation.

View Article and Find Full Text PDF

Kagome magnets provide a fascinating platform for a plethora of topological quantum phenomena, in which the delicate interplay between frustrated crystal structure, magnetization, and spin-orbit coupling (SOC) can engender highly tunable topological states. Here, utilizing angle-resolved photoemission spectroscopy, the Weyl lines are directly visualized with strong out-of-plane dispersion in the A-A stacked kagome magnet GdMn Sn . Remarkably, the Weyl lines exhibit a strong magnetization-direction-tunable SOC gap and binding energy tunability after substituting Gd with Tb and Li, respectively.

View Article and Find Full Text PDF

Kagome materials often host exotic quantum phases, including spin liquids, Chern gap, charge density wave, and superconductivity. Existing scanning microscopy studies of the kagome charge order have been limited to nonkagome surface layers. Here, we tunnel into the kagome lattice of FeGe to uncover features of the charge order.

View Article and Find Full Text PDF

Counterfeiting has become a prevalent business worldwide, resulting in high losses for many businesses. Considerable attention has been paid to research an individual attitude toward purchasing luxury counterfeit products in the offline context. However, there is currently lesser-known literature on the given phenomenon in the context of social commerce.

View Article and Find Full Text PDF

A hallmark of strongly correlated quantum materials is the rich phase diagram resulting from competing and intertwined phases with nearly degenerate ground-state energies. A well-known example is the copper oxides, in which a charge density wave (CDW) is ordered well above and strongly coupled to the magnetic order to form spin-charge-separated stripes that compete with superconductivity. Recently, such rich phase diagrams have also been shown in correlated topological materials.

View Article and Find Full Text PDF

Room-temperature realization of macroscopic quantum phases is one of the major pursuits in fundamental physics. The quantum spin Hall phase is a topological quantum phase that features a two-dimensional insulating bulk and a helical edge state. Here we use vector magnetic field and variable temperature based scanning tunnelling microscopy to provide micro-spectroscopic evidence for a room-temperature quantum spin Hall edge state on the surface of the higher-order topological insulator BiBr.

View Article and Find Full Text PDF