Microglia, the immune cells of the central nervous system, are dynamic and heterogenous cells. While single cell RNA sequencing has become the conventional methodology for evaluating microglial state, transcriptomics do not provide insight into functional changes, identifying a critical gap in the field. Here, we propose a novel organelle phenotyping approach in which we treat live human induced pluripotent stem cell-derived microglia (iMGL) with organelle dyes staining mitochondria, lipids, lysosomes and acquire data by live-cell spectral microscopy.
View Article and Find Full Text PDFNoncoding genetic variation is a major driver of phenotypic diversity, but functional interpretation is challenging. To better understand common genetic variation associated with brain diseases, we defined noncoding regulatory regions for major cell types of the human brain. Whereas psychiatric disorders were primarily associated with variants in transcriptional enhancers and promoters in neurons, sporadic Alzheimer's disease (AD) variants were largely confined to microglia enhancers.
View Article and Find Full Text PDF