Publications by authors named "Zagorac J"

Studying the interaction of inorganic systems with organic ones is a highly important avenue for finding new drugs and treatment methods. Tumor cells show an increased demand for amino acids due to their rapid proliferation; thus, targeting their metabolism is becoming a potential oncological therapeutic strategy. One of the inorganic materials that show antitumor properties is titanium dioxide, while its doping was found to enhance interactions with biological systems.

View Article and Find Full Text PDF

ZnO/ZnS core/shell nanostructures, which are studied for diverse possible applications, ranging from semiconductors, photovoltaics, and light-emitting diodes (LED), to solar cells, infrared detectors, and thermoelectrics, were synthesized and characterized by XRD, HR-(S)TEM, and analytical TEM (EDX and EELS). Moreover, band-gap measurements of the ZnO/ZnS core/shell nanostructures have been performed using UV/Vis DRS. The experimental results were combined with theoretical modeling of ZnO/ZnS (hetero)structures and band structure calculations for ZnO/ZnS systems, yielding more insights into the properties of the nanoparticles.

View Article and Find Full Text PDF

We report on a new class of ZnO/ZnS nanomaterials based on the wurtzite/sphalerite architecture with improved electronic properties. Semiconducting properties of pristine ZnO and ZnS compounds and mixed ZnOS nanomaterials have been investigated using ab initio methods. In particular, we present the results of our theoretical investigation on the electronic structure of the ZnOS (x = 0.

View Article and Find Full Text PDF

Silicon borides represent very appealing industrial materials for research owing to their remarkable features, and, together with other boride and carbide-based materials, have very wide applications. Various Si-B phases have been investigated in the past, however a limited number of studies have been done on the pristine SiB compound. Structure prediction using a data mining ab initio approach has been performed in pure silicon hexaboride.

View Article and Find Full Text PDF

The Inorganic Crystal Structure Database (ICSD) is the world's largest database of fully evaluated and published crystal structure data, mostly obtained from experimental results. However, the purely experimental approach is no longer the only route to discover new compounds and structures. In the past few decades, numerous computational methods for simulating and predicting structures of inorganic solids have emerged, creating large numbers of theoretical crystal data.

View Article and Find Full Text PDF

Barium sulfide (BaS) is an important precursor to other barium compounds with applications from ceramics and flame retardants to luminous paints and additives, and recent research shows potential technological applications in electrical and optical devices. Under normal conditions, BaS crystallizes in the NaCl type of structure, and with the increase in pressure BaS undergoes a structural phase transition to a CsCl type modification. This study presents modeling of barium sulfide under pressure with special focus on structural aspects and electronic properties.

View Article and Find Full Text PDF

We report on a combined ultra-fast in situ SAXS and WAXS study along a free-jet providing insight into the evolution of the morphology and crystalline structure of CdS quantum dots in the very early stage of nucleation between 100 μs and 2.5 ms with a time resolution down to 10 μs. Accessing this yet unexplored time regime provides direct evidence of a two-step mechanism via formation of prenucleation clusters followed by nanoparticle nucleation from coalescing precursors.

View Article and Find Full Text PDF

We have performed a crystal structure prediction study of CaMnO3 focusing on structures generated by octahedral tilting according to group-subgroup relations from the ideal perovskite type (Pm\overline 3 m), which is the aristotype of the experimentally known CaMnO3 compound in the Pnma space group. Furthermore, additional structure candidates have been obtained using data mining. For each of the structure candidates, a local optimization on the ab initio level using density-functional theory (LDA, hybrid B3LYP) and the Hartree--Fock (HF) method was performed, and we find that several of the modifications may be experimentally accessible.

View Article and Find Full Text PDF

The systematic comparison of the atomic structure of solids and clusters has become an important task in crystallography, chemistry, physics and materials science, in particular in the context of structure prediction and structure determination of nanomaterials. In this work, an efficient and robust algorithm for the comparison of cluster structures is presented, which is based on the mapping of the point patterns of the two clusters onto each other. This algorithm has been implemented as the module CCL in the structure visualization and analysis program .

View Article and Find Full Text PDF