Publications by authors named "Zagar Y"

Reconstructing functional neuronal circuits is one major challenge of central nervous system repair. Through activation of pro-growth signaling pathways, some neurons achieve long-distance axon regrowth. Yet, functional reconnection has hardly been obtained, as these regenerating axons fail to resume their initial trajectory and reinnervate their proper target.

View Article and Find Full Text PDF

Second messengers, including cAMP, cGMP and Ca are often placed in an integrating position to combine the extracellular cues that orient growing axons in the developing brain. This view suggests that axon repellents share the same set of cellular messenger signals and that axon attractants evoke opposite cAMP, cGMP and Ca changes. Investigating the confinement of these second messengers in cellular nanodomains, we instead demonstrate that two repellent cues, ephrin-A5 and Slit1, induce spatially segregated signals.

View Article and Find Full Text PDF

Mutations in the ubiquitously expressed pre-mRNA processing factor (PRPF) 31 gene, one of the most common causes of dominant form of Retinitis Pigmentosa (RP), lead to a retina-specific phenotype. It is uncertain which retinal cell types are affected and animal models do not clearly present the RP phenotype observed in PRPF31 patients. Retinal organoids and retinal pigment epithelial (RPE) cells derived from human-induced pluripotent stem cells (iPSCs) provide potential opportunities for studying human PRPF31-related RP.

View Article and Find Full Text PDF

The retinal phagocytic machinery resembles the one used by macrophages to clear apoptotic cells. However, in the retina, the permanent contact between photoreceptor outer segments (POS) and retinal pigment epithelial (RPE) cells requires a tight control of this circadian machinery. In addition to the known receptors synchronizing POS internalization, several others are expressed by RPE cells.

View Article and Find Full Text PDF

Plexin-B2 deletion leads to aberrant lamination of cerebellar granule neurons (CGNs) and Purkinje cells. Although in the cerebellum Plexin-B2 is only expressed by proliferating CGN precursors in the outer external granule layer (oEGL), its function in CGN development is still elusive. Here, we used 3D imaging, in vivo electroporation and live-imaging techniques to study CGN development in novel cerebellum-specific conditional knockout mice.

View Article and Find Full Text PDF

The forebrain hemispheres are predominantly separated during embryogenesis by the interhemispheric fissure (IHF). Radial astroglia remodel the IHF to form a continuous substrate between the hemispheres for midline crossing of the corpus callosum (CC) and hippocampal commissure (HC). Deleted in colorectal carcinoma (DCC) and netrin 1 (NTN1) are molecules that have an evolutionarily conserved function in commissural axon guidance.

View Article and Find Full Text PDF

Axonal arbors in many neuronal networks are exuberant early during development and become refined by activity-dependent competitive mechanisms. Theoretical work proposed non-competitive interactions between co-active axons to co-stabilize their connections, but the demonstration of such interactions is lacking. Here, we provide experimental evidence that reducing cyclic AMP (cAMP) signaling in a subset of retinal ganglion cells favors the elimination of thalamic projections from neighboring neurons, pointing to a cAMP-dependent interaction that promotes axon stabilization.

View Article and Find Full Text PDF

A minor haplotype of the 10q26 locus conveys the strongest genetic risk for age-related macular degeneration (AMD). Here, we examined the mechanisms underlying this susceptibility. We found that monocytes from homozygous carriers of the 10q26 AMD-risk haplotype expressed high amounts of the serine peptidase HTRA1, and HTRA1 located to mononuclear phagocytes (MPs) in eyes of non-carriers with AMD.

View Article and Find Full Text PDF

Calcium is a second messenger crucial to a myriad of cellular processes ranging from regulation of metabolism and cell survival to vesicle release and motility. Current strategies to directly manipulate endogenous calcium signals lack cellular and subcellular specificity. We introduce SpiCee, a versatile and genetically encoded chelator combining low- and high-affinity sites for calcium.

View Article and Find Full Text PDF

cGMP is critical to a variety of cellular processes, but the available tools to interfere with endogenous cGMP lack cellular and subcellular specificity. We introduce SponGee, a genetically encoded chelator of this cyclic nucleotide that enables in vitro and in vivo manipulations in single cells and in biochemically defined subcellular compartments. SponGee buffers physiological changes in cGMP concentration in various model systems while not affecting cAMP signals.

View Article and Find Full Text PDF

Netrin-1 is a secreted protein that was first identified 20 years ago as an axon guidance molecule that regulates midline crossing in the CNS. It plays critical roles in various tissues throughout development and is implicated in tumorigenesis and inflammation in adulthood. Despite extensive studies, no inherited human disease has been directly associated with mutations in NTN1, the gene coding for netrin-1.

View Article and Find Full Text PDF

The development of neuronal circuits is controlled by guidance molecules that are hypothesized to interact with the cholesterol-enriched domains of the plasma membrane termed lipid rafts. Whether such domains enable local intracellular signalling at the submicrometre scale in developing neurons and are required for shaping the nervous system connectivity in vivo remains controversial. Here, we report a role for lipid rafts in generating domains of local cAMP signalling in axonal growth cones downstream of ephrin-A repulsive guidance cues.

View Article and Find Full Text PDF

The transmembrane semaphorin, Sema6A, has important roles in axon guidance, cell migration and neuronal connectivity in multiple regions of the nervous system, mediated by context-dependent interactions with plexin receptors, PlxnA2 and PlxnA4. Here, we demonstrate that Sema6A can also signal cell-autonomously, in two modes, constitutively, or in response to higher-order clustering mediated by either PlxnA2-binding or chemically induced multimerisation. Sema6A activation stimulates recruitment of Abl to the cytoplasmic domain of Sema6A and phos¡phorylation of this cytoplasmic tyrosine kinase, as well as phosphorylation of additional cytoskeletal regulators.

View Article and Find Full Text PDF

Robo-Slit and Plexin-Semaphorin signaling participate in various developmental and pathogenic processes. During commissural axon guidance in the spinal cord, chemorepulsion by Semaphorin3B and Slits controls midline crossing. Slit processing generates an N-terminal fragment (SlitN) that binds to Robo1 and Robo2 receptors and mediates Slit repulsive activity, as well as a C-terminal fragment (SlitC) with an unknown receptor and bioactivity.

View Article and Find Full Text PDF

Development of neuronal circuits is controlled by evolutionarily conserved axon guidance molecules, including Slits, the repulsive ligands for roundabout (Robo) receptors, and Netrin-1, which mediates attraction through the DCC receptor. We discovered that the Robo3 receptor fundamentally changed its mechanism of action during mammalian evolution. Unlike other Robo receptors, mammalian Robo3 is not a high-affinity receptor for Slits because of specific substitutions in the first immunoglobulin domain.

View Article and Find Full Text PDF

Purpose: Mutations in GPR179, which encodes the G protein-coupled receptor 179, lead to autosomal recessive complete (c) congenital stationary night blindness (CSNB), which is characterized by an ON-bipolar retinal cell dysfunction. This study further defined the exact site of Gpr179 expression and its protein localization in human retina and elucidated the pathogenic mechanism of the reported missense and splice site mutations.

Methods: RNA in situ hybridization was performed with mouse retinal sections.

View Article and Find Full Text PDF

Myelination is regulated by extracellular proteins, which control interactions between oligodendrocytes and axons. Semaphorins are repulsive axon guidance molecules, which control the migration of oligodendrocyte precursors during normal development and possibly in demyelinating diseases. We show here that the transmembrane semaphorin 6A (Sema6A) is highly expressed by myelinating oligodendrocytes in the postnatal mouse brain.

View Article and Find Full Text PDF

In most tissues, the precise control of cell migration and cell-cell interaction is of paramount importance to the development of a functional structure. Several families of secreted molecules have been implicated in regulating these aspects of development, including the Slits and their Robo receptors. These proteins have well described roles in axon guidance but by influencing cell polarity and adhesion, they participate in many developmental processes in diverse cell types.

View Article and Find Full Text PDF

During their migration, cerebellar granule cells switch from a tangential to a radial mode of migration. We have previously demonstrated that this involves the transmembrane semaphorin Sema6A. We show here that plexin-A2 is the receptor that controls Sema6A function in migrating granule cells.

View Article and Find Full Text PDF

17Beta-estradiol (17beta-E2) elicits at the cell membrane rapid actions that remain insensitive to the inhibitory effect of ICI 182,780, a pure estrogen antagonist, and therefore cannot be attributed to the classic nuclear receptors. We addressed the question of the identity of the protein involved in these rapid actions. We first examined the responses of several cell lines for intracellular calcium mobilization, an effect not inhibited by ICI 182,780, tamoxifen and raloxifen.

View Article and Find Full Text PDF

Androgens act on transcription via intracellular androgen receptors (ARs), but they also have rapid AR-independent effects. We have identified the multistep processes involved in the rapid actions of androgens in male osteoblasts, which also possess the classical AR. Incubating cells with 5alpha-dihydroxytestosterone (100 pm, DHT) rapidly increased (1 min) the phosphorylation of the transcription factor Elk-1, and this was inhibited by pertussis toxin (PTX).

View Article and Find Full Text PDF

Cross-talk between Smad and mitogen-activated protein kinase pathways has been described recently, and evidence for Smad cooperation with AP-1 is emerging. Here we report that epidermal growth factor (EGF) potentializes transforming growth factor beta (TGF-beta)-induced Smad3 transactivation in rat hepatocytes, an effect abrogated by TAM-67, a dominant negative mutant of AP-1. Antisense transfection experiments indicated that c-Jun and JunB were involved in the synergistic effect, and endogenous c-Jun physically associated with Smad3 during a combined EGF/TGF-beta treatment.

View Article and Find Full Text PDF