Background: Gastrointestinal (GI) diseases pose significant challenges for healthcare systems, largely due to the complexities involved in their detection and treatment. Despite the advancements in deep neural networks, their high computational demands hinder their practical use in clinical environments.
Objective: This study aims to address the computational inefficiencies of deep neural networks by proposing a lightweight model that integrates model compression techniques, ConvLSTM layers, and ConvNext Blocks, all optimized through Knowledge Distillation (KD).