Publications by authors named "Zafra Francisco"

Article Synopsis
  • Nonketotic hyperglycinemia (NKH) is a rare disorder linked to severe brain malformations and neurological issues, and understanding its underlying causes is still a work in progress.
  • Researchers aimed to study how gene variants associated with NKH affect the growth and development of human stem cells into astrocytes, a type of brain cell, by creating a specific cell line for their investigation.
  • The study revealed that the modified stem cells underwent metabolic changes to adapt, which led to increased growth and a shift in the types of brain cells produced, providing insights into NKH and potential new treatment strategies.
View Article and Find Full Text PDF

NMDA-type glutamate receptors (NMDARs) constitute one of the main glutamate (Glu) targets in the central nervous system and are involved in synaptic plasticity, which is the molecular substrate of learning and memory. Hypofunction of NMDARs has been associated with schizophrenia, while overstimulation causes neuronal death in neurodegenerative diseases or in stroke. The function of NMDARs requires coincidental binding of Glu along with other cellular signals such as neuronal depolarization, and the presence of other endogenous ligands that modulate their activity by allosterism.

View Article and Find Full Text PDF

In this article, we identified a novel epileptogenic variant (G307R) of the gene , which encodes the GABA transporter GAT-1. Our main goal was to investigate the pathogenic mechanisms of this variant, located near the neurotransmitter permeation pathway, and compare it with other variants located either in the permeation pathway or close to the lipid bilayer. The mutants G307R and A334P, close to the gates of the transporter, could be glycosylated with variable efficiency and reached the membrane, albeit inactive.

View Article and Find Full Text PDF

Membrane proteins constitute the filter that controls the cellular traffic of nutrients, ions and other essential molecules, as well as the transmission of signals across the membrane. These proteins interact with other proteins in the cytosol, cytoskeleton or the extracellular side of the membrane, giving rise to complex interactomes that are distributed throughout the various lipid microdomains of the membrane plane. In this manner, complex networks of protein-protein and protein-lipid interactions are formed which regulate the most diverse biological functions, and disturbance of these networks can lead to disease.

View Article and Find Full Text PDF

Dopamine (DA) transporters (DATs) are regulated by trafficking and modulatory processes that probably rely on stable and transient interactions with neighboring proteins and lipids. Using proximity-dependent biotin identification (BioID), we found novel potential partners for DAT, including several membrane proteins, such as the transmembrane chaperone 4F2hc, the proteolipid M6a and a potential membrane receptor for progesterone (PGRMC2). We also detected two cytoplasmic proteins: a component of the Cullin1-dependent ubiquitination machinery termed F-box/LRR-repeat protein 2 (FBXL2), and the enzyme inositol 5-phosphatase 2 (SHIP2).

View Article and Find Full Text PDF

The voltage-sensitive sodium channel Na1.1 plays a critical role in regulating excitability of GABAergic neurons and mutations in the corresponding gene are associated to Dravet syndrome and other forms of epilepsy. The activity of this channel is regulated by several protein kinases.

View Article and Find Full Text PDF

Craniofacial neuropathic pain affects millions of people worldwide and is often difficult to treat. Two key mechanisms underlying this condition are a loss of the negative control exerted by inhibitory interneurons and an early microglial reaction. Basic features of these mechanisms, however, are still poorly understood.

View Article and Find Full Text PDF

The glycine transporter GLYT1 participates in inhibitory and excitatory neurotransmission by controlling the reuptake of this neuroactive substance from synapses. Over the past few years, microRNAs have emerged as potent negative regulators of gene expression. In this report, we investigate the possible regulation of GLYT1 by microRNAs.

View Article and Find Full Text PDF

Introduction: Although several echocardiographic parameters have different values according to sex, there are no studies in echocardiographic variables of aortic stenosis (AS) severity. Our aim was to evaluate the sex-related prognosis of several echocardiographic parameters in AS.

Methods: Two hundred and twenty-five patients with at least moderate AS (effective orifice area [EOA] ≤ 1.

View Article and Find Full Text PDF

Dopamine and glutamate transporters (DAT and GLT-1, respectively) share some biophysical characteristics, as both are secondary active carriers coupled to electrochemical ion gradients. In order to identify common or specific components of their respective proteomes, we performed a proximity labelling assay (BioID) in the hippocampal cell line HT22. While most of the identified proteins were specific for each transporter (and will be analyzed elsewhere), we detected two membrane proteins in the shared interactome of GLT-1 and DAT: the transmembrane protein 263 (Tmem263) and the potassium channel protein Kv7.

View Article and Find Full Text PDF

We used proximity-dependent biotin identification (BioID) to find proteins that potentially interact with the major glial glutamate transporter, GLT-1, and we studied how these interactions might affect its activity. GTPase Rac1 was one protein identified, and interfering with its GTP/GDP cycle in mixed primary rat brain cultures affected both the clustering of GLT-1 at the astrocytic processes and the transport kinetics, increasing its uptake activity at low micromolar glutamate concentrations in a manner that was dependent on the effector kinase PAK1 and the actin cytoskeleton. Interestingly, the same manipulations had a different effect on another glial glutamate transporter, GLAST, inhibiting its activity.

View Article and Find Full Text PDF

The α7 nicotinic receptor subunit and its partially duplicated human-specific dupα7 isoform are coexpressed in neuronal and non-neuronal cells. In these cells, α7 subunits form homopentameric α7 nicotinic acetylcholine receptors (α7-nAChRs) implicated in numerous pathologies. In immune cells, α7-nAChRs are essential for vagal control of inflammatory response in sepsis.

View Article and Find Full Text PDF

GLT-1 is the main glutamate transporter in the brain and its trafficking controls its availability at the cell surface, thereby shaping glutamatergic neurotransmission under physiological and pathological conditions. Extracellular glutamate is known to trigger ubiquitin-dependent GLT-1 internalization from the surface of the cell to the intracellular compartment, yet here we show that internalization also requires the participation of calcium ions. Consistent with previous studies, the addition of glutamate (1 mM) to mixed primary cultures (containing neurons and astrocytes) promotes GLT-1 internalization, an effect that was suppressed in the absence of extracellular Ca.

View Article and Find Full Text PDF

Glycine plays two roles in neurotransmission. In caudal areas like the spinal cord and the brainstem, it acts as an inhibitory neurotransmitter, but in all regions of the CNS, it also works as a co-agonist with L-glutamate at N-methyl-D-aspartate receptors (NMDARs). The glycine fluxes in the CNS are regulated by two specific transporters for glycine, GlyT1 and GlyT2, perhaps with the cooperation of diverse neutral amino acid transporters like Asc-1 or SNAT5/SN2.

View Article and Find Full Text PDF

Glycinergic inhibitory neurons of the spinal dorsal horn exert critical control over the conduction of nociceptive signals to higher brain areas. The neuronal glycine transporter 2 (GlyT2) is involved in the recycling of synaptic glycine from the inhibitory synaptic cleft and its activity modulates intra and extracellular glycine concentrations. In this report we show that the stimulation of P2X purinergic receptors with βγ-methylene adenosine 5'-triphosphate induces the up-regulation of GlyT2 transport activity by increasing total and plasma membrane expression and reducing transporter ubiquitination.

View Article and Find Full Text PDF

Glycinergic neurons are major contributors to the regulation of neuronal excitability, mainly in caudal areas of the nervous system. These neurons control fluxes of sensory information between the periphery and the CNS and diverse motor activities like locomotion, respiration or vocalization. The phenotype of a glycinergic neuron is determined by the expression of at least two proteins: GlyT2, a plasma membrane transporter of glycine, and VIAAT, a vesicular transporter shared by glycine and GABA.

View Article and Find Full Text PDF

GLT-1 is the main glutamate transporter in the brain and undergoes trafficking processes that control its concentration on the cell surface thereby shaping glutamatergic neurotransmission. We have investigated how the traffic of GLT-1 is regulated by transporter activity. We report that internalization of GLT-1 from the cell surface is accelerated by transportable substrates like glutamate or aspartate, as well as by the transportable inhibitor L-trans-2,4-PDC, but not by the non-substrate inhibitor WAY 213613 in primary mixed cultures and in transiently transfected HEK293 cells.

View Article and Find Full Text PDF

The glutamate transporters GLAST and GLT-1 are mainly expressed in glial cells and regulate glutamate levels in the synapses. GLAST and GLT-1 are the targets of several signaling pathways. In this study we explore the possible functional interaction between these transporters and GSK3β.

View Article and Find Full Text PDF

Fast inhibitory glycinergic transmission occurs in spinal cord, brainstem, and retina to modulate the processing of motor and sensory information. After synaptic vesicle fusion, glycine is recovered back to the presynaptic terminal by the neuronal glycine transporter 2 (GlyT2) to maintain quantal glycine content in synaptic vesicles. The loss of presynaptic GlyT2 drastically impairs the refilling of glycinergic synaptic vesicles and severely disrupts neurotransmission.

View Article and Find Full Text PDF

Inhibitory glycinergic neurotransmission is terminated by the specific glycine transporters GlyT1 and GlyT2 which actively reuptake glycine from the synaptic cleft. GlyT1 is associated with both glycinergic and glutamatergic pathways, and is the main regulator of the glycine levels in the synapses. GlyT2 is the main supplier of glycine for vesicle refilling, a process that is vital to preserve the quantal glycine content in synaptic vesicles.

View Article and Find Full Text PDF

Solute neutral amino acid transporter 5 (SNAT5/SN2) is a member of the System N family, expressed in glial cells in the adult brain, able to transport glutamine, histidine or glycine among other substrates. Its tight association with synapses and its electroneutral mode of operation that allows the bidirectional movement of substrates, supports the idea that this transporter participates in the function of the glutamine-glutamate cycle between neurons and glia. Moreover, SNAT5/SN2 might contribute to the regulation of glycine concentration in glutamatergic synapses and, therefore, to the functioning of the N-methyl-d-aspartate (NMDA) subtype of glutamate receptors.

View Article and Find Full Text PDF

We have previously shown the presence of the glycine transporter GLYT1 in glutamatergic terminals of the rat brain. In this study we present immunohistochemical and biochemical evidence indicating that GLYT1 is expressed not only at the plasma membrane of glutamatergic neurons, but also at synaptic vesicles. Confocal microscopy, immunoblots analysis of a highly purified synaptic vesicle fraction and immunoisolation of synaptic vesicles with anti-synaptophysin antibodies strongly suggested the presence of GLYT1 in synaptic vesicles.

View Article and Find Full Text PDF

Introduction And Objectives: In primary angioplasty, bivalirudin is superior to treatment with heparin plus glycoprotein inhibitors for reducing cardiovascular events, although bivalirudin increases the risk of stent thrombosis. Our hypothesis is that the use of prasugrel plus bivalirudin in primary angioplasty would reduce stent thrombosis and cardiovascular events.

Method: Consecutive patients with acute ST-segment elevation myocardial infarction who were treated by primary angioplasty within 12 hours of the onset of symptoms received bivalirudin plus clopidogrel (Group A) or bivalirudin plus prasugrel (Group B).

View Article and Find Full Text PDF