Publications by authors named "Zafer Evis"

As a thermoplastic and bioinert polymer, polyether ether ketone (PEEK) serves as spine implants, femoral stems, cranial implants, and joint arthroplasty implants due to its mechanical properties resembling the cortical bone, chemical stability, and radiolucency. Although there are standards and antibiotic treatments for infection control during and after surgery, the infection risk is lowered but can not be eliminated. The antibacterial properties of PEEK implants should be improved to provide better infection control.

View Article and Find Full Text PDF

Bioceramic/polymer composites have dragged a lot of attention for treating hard tissue damage in recent years. In this study, we synthesized barium-doped baghdadite (Ba-BAG), as a novel bioceramic, and later developed fibrous composite poly (hydroxybutyrate) co (hydroxyvalerate)- polycaprolactone (PHBV-PCL) scaffolds containing different amounts of baghdadite (BAG) and Ba-BAG, intended to be used in bone regeneration. Our results demonstrated that BAG and Ba-doped BAG powders were synthesized successfully using the sol-gel method and their microstructural, physicochemical, and cytotoxical properties results were evaluated.

View Article and Find Full Text PDF

In this study, Zn doped hydroxyapatite (Zn HA)/boron nitride nanofiber (BNNF)/poly-ε-caprolactone (PCL) composite aligned fibrous scaffolds are produced with rotary jet spinning (RJS) for bone tissue engineering applications. It is hypothesized that addition of Zn HA and BNNF will contribute to cell viability as well as mechanical and osteogenic properties of the PCL scaffolds. Zn HA was synthesized by mixing Ca and P sources followed by sonication and aging whereas BNNF was obtained by the reaction of melamine with boric acid followed by freeze-drying for annealing of fibers.

View Article and Find Full Text PDF

Making composite scaffolds is one of the well-known methods to improve the properties of scaffolds used in bone tissue engineering. In this study, novel ceramic-based 3D porous composite scaffolds were successfully prepared using boron-doped hydroxyapatite, as the primary component, and baghdadite, as the secondary component. The effects of making composites on the properties of boron-doped hydroxyapatite-based scaffolds were investigated in terms of physicochemical, mechanical, and biological properties.

View Article and Find Full Text PDF

Osseointegration of implants depends on several intertwined factors: osteogenesis, angiogenesis, and immunomodulation. Lately, novel reinforcements allowing faster bonding with osseous tissue have been explored intensively. In this study, we hypothesized the use of boron as a major multifunctional ion to confer versatility to calcium-deficient hydroxyapatite (cHA) synthesized by a wet precipitation/microwave reflux method.

View Article and Find Full Text PDF

Nanomaterials have received increasing attention due to their controllable physical and chemical properties and their improved performance over their bulk structures during the last years. Carbon nanostructures are one of the most widely searched materials for use in different applications ranging from electronic to biomedical because of their exceptional physical and chemical properties. However, BN nanostructures surpassed the attention of the carbon-based nanostructure because of their enhanced thermal and chemical stabilities in addition to structural similarity with the carbon nanomaterials.

View Article and Find Full Text PDF

Bioceramic/polymer composite systems have gained importance in treating hard tissue damages using bone tissue engineering (BTE). In this context, it was aimed to develop 3D porous composite PCL-PEG-PCL scaffolds containing different amounts of B, Sr and Mg multi-doped HA that can provide bone regeneration in the bone defect area and to investigate the effect of both the amount of inorganic phase and the porosity on the mechanical and the biological properties. B-Sr-Mg multi-doped HA and PCL-PEG-PCL copolymer were successfully synthesized.

View Article and Find Full Text PDF

High energy traumas could cause critical damage to bone, which will require permanent implants to recover while functionally integrating with the host bone. Critical sized bone defects necessitate the use of bioactive metallic implants. Because of bioinertness, various methods involving surface modifications such as surface treatments, the development of novel alloys, bioceramic/bioglass coatings, and biofunctional molecule grafting have been utilized to effectively integrate metallic implants with a living bone.

View Article and Find Full Text PDF

Biocompatible dicalcium phosphate (DCP) cements are widely used as bone repair materials. In this study, we aimed to investigate the impact of different amounts of sodium alginate (SA) on the microstructural, mechanical, and biological properties of DCP cements. Beta-tricalcium phosphate (β-TCP) was prepared using a microwave-assisted wet precipitation system.

View Article and Find Full Text PDF

Hydroxyapatite (HA, Ca(PO)(OH)) is the main constituent mineral of bone and teeth in mammals. Due to its outstanding biocompatibility and osteoconductive capabilities, it is preferred for bone repair and replacement. Owing to high potential to have excellent biological properties, ternary ions-doped HAs have just begun to be investigated in the biomedical field and preparing multi-doped HAs is a fairly new approach.

View Article and Find Full Text PDF

Boron-doped hydroxyapatite/tricalcium phosphates (BHTs) were synthesized to study boron uptake and correlate structural alterations of incremental boron addition (0 to 10 mol%). BHTs with a Ca/P ratio of 1.6 were prepared by a wet precipitation/microwave reflux method, sieved (< 70 μm) and characterized.

View Article and Find Full Text PDF

In this study, we aimed to prepare and characterize porous scaffolds composed of pure and boron oxide (BO)-doped bioactive glass (BG) that were infiltrated by cellulose acetate-gelatin (CA-GE) polymer solution for bone tissue engineering applications. Composite scaffolds were cross-linked with glutaraldehyde after polymer coating to protect the structural integrity of the polymeric-coated scaffolds. The impact of BO incorporation into BG-polymer porous scaffolds on the cross-sectional morphology, porosity, mechanical properties, degradation and bioactivity of the scaffolds was investigated.

View Article and Find Full Text PDF

Statement Of Problem: Recent commercial extended-pour irreversible hydrocolloid impression materials (EPIHIMs) claim to maintain dimensional stability up to 120 hours. However, data regarding their mechanical properties and performance after 120 hours of storage are lacking.

Purpose: The purpose of this in vitro study was to test the elastic recovery, strain in compression, and tear strength properties of 5 commercially available EPIHIMs, immediately after preparation and after 120 hours of storage under specific storage conditions.

View Article and Find Full Text PDF

In this study, we have successfully doped hydroxyapatite (HA) with zinc (Zn), sulphate (SO) and fluoride (F) ions to develop a new composition of bioceramic, Ca Zn(PO)(SO)(OH)F(SO), (x = 0, 0.2, 0.6, 1.

View Article and Find Full Text PDF

Clinoptilolite (Cpt)-nanohydroxyapatite (HA) (Cpt-HA) scaffolds were fabricated as a potential material for loadbearing orthopaedic applications. Cpt-HA materials were successfully synthesized by using microwave assisted reflux method followed by the fabrication of three-dimensional (3D) porous scaffold via thermal decomposition process using polyethylene glycol (PEG)/ polyvinyl alcohol (PVA) as porogens. The scaffold materials were characterized using x-ray diffraction, Fourier transform Infra-red, Scanning electron microscopy and Energy dispersive spectroscopy techniques.

View Article and Find Full Text PDF

Barrier membranes are used in periodontal tissue engineering for successful neo-bone tissue formation and prevention of bacterial colonization. We aimed to prepare and characterize novel 7% boron-modified bioactive glass (7B-BG) containing bilayered membrane for this end. We hypothesized that presence of 7B-BG could promote structural and biological properties of guided bone regeneration (GBR) membrane.

View Article and Find Full Text PDF

Dental caries is a dental disease affecting public health, which results in many socio-economic consequences. This disease causes loss of tooth hard tissue and subsequent inflammation and loss of the dental pulp. In this study, it was aimed to develop and characterize boron (B) modified bioactive glass nanoparticles (BG-NPs) containing cellulose acetate/oxidized pullulan/gelatin (CA/ox-PULL/GEL) three dimensional scaffolds with tubular morphology for dentin regeneration.

View Article and Find Full Text PDF

Guided bone regeneration (GBR) is a therapeutic modality applied prior to dental implant placement to increase bone density at the defect site or during placement for directing bone growth around implant. In this study, an asymmetric, bilayer structure was prepared by covalently bonding a dense polycaprolactone-polyethylene glycol-polycaprolactone (PCEC) membrane layer with a hydrogel layer composed of bismuth doped bioactive glass (BG, 45S5) and graphene oxide (GO) particles incorporated in gelatin. Structural and mechanical properties (surface morphology and chemistry, thickness, degradation rate and tensile strength of GBR membranes) were studied.

View Article and Find Full Text PDF

Every year, many dental restoration methods are carried out in the world and most of them do not succeed. High cost of these restorations and rejection possibility of the implants are main drawbacks. For this reason, a regenerative approach for repairing the damaged dentin-pulp complex or generating a new tissue is needed.

View Article and Find Full Text PDF

Background: For long-term success of dental implants, it is essential to maintain the health of the surrounding soft tissue barrier, which protects the bone-implant interface from the microorganisms. Although implants based on titanium and its alloys still dominate the dental implant market, alumina (Al O ) and zirconia (ZrO ) implant systems are widely used in the area. However, they provide smooth and bioinert surfaces in the transmucosal region, which poorly integrate with the surrounding tissues.

View Article and Find Full Text PDF

In this study, novel graphene oxide-incorporated silicate-doped nano-hydroxyapatite composites were prepared and their potential use for bone tissue engineering was investigated by developing an electrospun poly(ε-caprolactone) scaffold. Nanocomposite groups were synthesized to have two different ratios of graphene oxide (2 and 4 wt%) to evaluate the effect of graphene oxide incorporation and groups with different silicate-doped nano-hydroxyapatite content was prepared to investigate optimum concentrations of both silicate-doped nano-hydroxyapatite and graphene oxide. Three-dimensional poly(ε-caprolactone) scaffolds were prepared by wet electrospinning and reinforced with silicate-doped nano-hydroxyapatite/graphene oxide nanocomposite groups to improve bone regeneration potency.

View Article and Find Full Text PDF

The severe sole effects of seizures on the cortical part of bone were reported in our previous study. However, the side effects of anti-epileptic drug therapy on bones has not been differentiated from the effects of the convulsive seizures, yet. This study provides the first report on differentiation of the effects of seizures and carbamazepine (a widely used antiepileptic drug) therapy on bones; 50 mg/kg/day drug was given to genetically induced absence epileptic rats for five weeks.

View Article and Find Full Text PDF

Dual ions substituted hydroxyapatite (HA) received attention from scientists and researchers in the biomedical field owing to their excellent biological properties. This paper presents a novel biomaterial, which holds potential for bone tissue applications. Herein, we have successfully incorporated ferric (Fe )/selenate ( SeO42-) ions into the HA structure (Ca Fe (PO ) (SeO ) (OH) O ) (Fe-SeHA) through a microwave refluxing process.

View Article and Find Full Text PDF

Alterations in microstructure and mineral features can affect the mechanical and chemical properties of bones and their capacity to resist mechanical forces. Controversial results on diabetic bone mineral content have been reported and little is known about the structural alterations in collagen, maturation of apatite crystals, and carbonate content in diabetic bone. This current study is the first to report the mineral and organic properties of cortical, trabecular, and growth plate regions of diabetic rat femurs using Fourier transform infrared (FT-IR) microspectroscopy and the Vickers microhardness test.

View Article and Find Full Text PDF

Non-enzymatic glycation (NEG) is an age-related process accelerated by diseases like diabetes, and causes the accumulation of advanced glycation end-products (AGEs). NEG-mediated modification of bone's organic matrix, principally collagen type-I, has been implicated in impairing skeletal physiology and mechanics. Here, we present evidence, from in vitro and in vivo models, and establish a causal relationship between collagen glycation and alterations in bone fracture at multiple length scales.

View Article and Find Full Text PDF