Publications by authors named "Zafer Dallal Bashi"

Phytosterols and tocopherols are commonly used in food and pharmaceutical industries for their health benefits. Current analysis methods rely on conventional liquid chromatography, using an analytical column, which can be tedious and time consuming. However, simple, and fast analytical methods can facilitate their qualitative and quantitative analysis.

View Article and Find Full Text PDF

A novel liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed and validated to simultaneously quantify phytosterols (brassicasterol, campesterol, stigmasterol and β-sitosterol) and tocopherols (alpha, beta, gamma and delta) entrapped in the lipid bilayer of a liposomal formulation. Apart from liposomes (a pharmaceutical product), the developed method was able to quantify target analytes in agricultural products, thus showing wide applications. Atmospheric pressure chemical ionization (APCI) was employed due to the enhanced ionization of phytosterols and tocopherols in comparison to electrospray ionization.

View Article and Find Full Text PDF

Phytosterols are plant sterols recommended as adjuvant therapy for hypercholesterolemia and tocopherols are well-established anti-oxidants. However, thermo-sensitivity, lipophilicity and formulation-dependent efficacy bring challenges in the development of functional foods, enriched with phytosterols and tocopherols. To address this, we developed liposomes containing brassicasterol, campesterol and β-sitosterol obtained from canola oil deodorizer distillate, along with alpha, gamma and delta tocopherol.

View Article and Find Full Text PDF

Mitogen-activated protein kinases (MAPKs) play a central role in transferring signals and regulating gene expression in response to extracellular stimuli. An ortholog of the Saccharomyces cerevisiae cell wall integrity MAPK was identified in the phytopathogenic fungus Sclerotinia sclerotiorum. Disruption of the S.

View Article and Find Full Text PDF

Sclerotinia sclerotiorum releases a battery of polygalacturonases (PGs) during infection, which the host plant may cope with through production of polygalacturonase inhibitor proteins (PGIPs). To study the interaction between S. sclerotiorum PGs and Brassica napus PGIPs, 5 S.

View Article and Find Full Text PDF

Sclerotinia sclerotiorum releases hydrolytic enzymes that sequentially degrade the plant cuticle, middle lamellae, and primary and secondary cell walls. The cuticle was found to be a barrier to S. sclerotiorum infection, as leaves stripped of epicuticular wax were more rapidly colonized.

View Article and Find Full Text PDF

Successful host colonization by necrotrophic plant pathogens requires the induction of plant cell death to provide the nutrients needed for infection establishment and progression. We have cloned two genes encoding necrosis and ethylene-inducing peptides from Sclerotinia sclerotiorum, which we named SsNep1 and SsNep2. The peptides encoded by these genes induce necrosis when expressed transiently in tobacco leaves.

View Article and Find Full Text PDF

Fungal hyphae--and in some cases, spores--are multi-nucleate. During genetic transformation of these spores or mycelia, only one nucleus generally receives the transferred T-DNA generating heterokaryotic colonies. Characterization of genetic changes, such as the effects of gene disruption in the transformants, requires purified homokaryotic lines.

View Article and Find Full Text PDF

Hydrocinnamic acid esters, lignin, flavonoids, glucosinolates, and salicylic acid protect plants against UV exposure, oxidative stress, diseases, and herbivores. Through the phenylpropanoid pathway, certain Brassicaceae family members, including Arabidopsis thaliana and Brassica napus, accumulate large amounts of the anti-nutritive sinapoylcholine (sinapine) in the seed. We successfully down-regulated activities of key enzymes in the pathway including F5H and SCT and achieved reduction of sinapine and lignin in B.

View Article and Find Full Text PDF