Retrograde clay mineral reactions (reverse weathering), including glauconite formation, are first-order controls on element sequestration in marine sediments. Here, we report substantial element sequestration by glauconite formation in shallow marine settings from the Triassic to the Holocene, averaging 3 ± 2 mmol·cm²·kyr for K, Mg and Al, 16 ± 9 mmol·cm²·kyr for Si and 6 ± 3 mmol·cm²·kyr for Fe, which is ~2 orders of magnitude higher than estimates for deep-sea settings. Upscaling of glauconite abundances in shallow-water (0-200 m) environments predicts a present-day global uptake of ~≤ 0.
View Article and Find Full Text PDFEstablishing temporal constraints of faulting is of importance for tectonic and seismicity reconstructions and predictions. Conventional fault dating techniques commonly use bulk samples of syn-kinematic illite and other K-bearing minerals in fault gouges, which results in mixed ages of repeatedly reactivated faults as well as grain-size dependent age variations. Here we present a new approach to resolve fault reactivation histories by applying high-spatial resolution Rb-Sr dating to fine-grained mineral slickenfibres in faults occurring in Paleoproterozoic crystalline rocks.
View Article and Find Full Text PDFObjectives: The goal of the current pilot project was to probe the resting-state magnetoencephalography (MEG) in individuals with psychogenic nonepileptic seizures (PNES) and ascertain if there is evidence for frontal temporal cortical hyperexcitability, as evidenced by increased focal coherence in these regions.
Methods: Six patients with PNES and without any evidence of epilepsy were included. Nine healthy control (HC) subjects (age matched as a group) were also included.
Environ Sci Technol
January 2018
Understanding metal scavenging by calcite in deep aquifers in granite is of importance for deciphering and modeling hydrochemical fluctuations and water-rock interaction in the upper crust and for retention mechanisms associated with underground repositories for toxic wastes. Metal scavenging into calcite has generally been established in the laboratory or in natural environments that cannot be unreservedly applied to conditions in deep crystalline rocks, an environment of broad interest for nuclear waste repositories. Here, we report a microanalytical study of calcite precipitated over a period of 17 years from anoxic, low-temperature (14 °C), neutral (pH: 7.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2017
Serpentinization-fueled systems in the cool, hydrated forearc mantle of subduction zones may provide an environment that supports deep chemolithoautotrophic life. Here, we examine serpentinite clasts expelled from mud volcanoes above the Izu-Bonin-Mariana subduction zone forearc (Pacific Ocean) that contain complex organic matter and nanosized Ni-Fe alloys. Using time-of-flight secondary ion mass spectrometry and Raman spectroscopy, we determined that the organic matter consists of a mixture of aliphatic and aromatic compounds and functional groups such as amides.
View Article and Find Full Text PDF