Publications by authors named "Zack Gainsforth"

Observed photon count rates must be corrected for detector dead time effects for accurate quantification, especially at high count rates. We present the "constant k-ratio" method, a new approach for calibrating dead time for wavelength dispersive spectrometers by measuring k-ratios as a function of beam current. The method is based on the observation that for a given emission line at a specific take-off angle and electron beam energy, the intensity ratio from two materials containing the element should remain constant as a function of beam current, if the dead time calibration is accurate.

View Article and Find Full Text PDF

It is often assumed that electron backscatter and continuum (bremsstrahlung) productions emitted from electron-solid interactions during X-ray microanalysis in compounds can be extrapolated from pure element observations by means of the assumption of average atomic number, or Z-bar (Z¯). For pure elements the average Z is equal to the atomic number, but this direct approach fails for compounds. The use of simple atomic fractions yields completely spurious results, and while the commonly used mass fraction Z averaging produces fairly reasonable results, we know from physical considerations that the mass of the neutron plays only a negligible role in such interactions below ∼1 MeV.

View Article and Find Full Text PDF

The past decade has witnessed the development of layered-hydroxide-based self-supporting electrodes, but the low active mass ratio impedes its all-around energy-storage applications. Herein, the intrinsic limit of layered hydroxides is broken by engineering F-substituted β-Ni(OH) (Ni-F-OH) plates with a sub-micrometer thickness (over 700 nm), producing a superhigh mass loading of 29.8 mg cm on the carbon substrate.

View Article and Find Full Text PDF

We report the structure, chemical composition, O, Al-Mg, He, and Ne isotope systematics of an interplanetary dust particle, "Manchanito". These analyses indicate that Manchanito solidified as refractory glass (with oxidized Fe but reduced Ti) in a chondrule-like formation environment more than 3.2 Myr after CAIs, after which it was exposed to Q-like noble gases in the dissipating solar nebula.

View Article and Find Full Text PDF

Using chemical and petrologic evidence and modeling, we deduce that two chondrule-like particles named Iris and Callie, from Stardust cometary track C2052,12,74, formed in an environment very similar to that seen for type II chondrules in meteorites. Iris was heated near liquidus, equilibrated, and cooled at ≤ 100 °C/hr and within ≈ 2 log units of the IW buffer with a high partial pressure of Na such as would be present with dust enrichments of ≈ 10. There was no detectable metamorphic, nebular or aqueous alteration.

View Article and Find Full Text PDF

Advances in the spatial resolution of modern analytical techniques have tremendously augmented the scientific insight gained from the analysis of natural samples. Yet, while techniques for the elemental and structural characterization of samples have achieved sub-nanometre spatial resolution, infrared spectral mapping of geochemical samples at vibrational 'fingerprint' wavelengths has remained restricted to spatial scales >10 μm. Nevertheless, infrared spectroscopy remains an invaluable contactless probe of chemical structure, details of which offer clues to the formation history of minerals.

View Article and Find Full Text PDF

Seven particles captured by the Stardust Interstellar Dust Collector and returned to Earth for laboratory analysis have features consistent with an origin in the contemporary interstellar dust stream. More than 50 spacecraft debris particles were also identified. The interstellar dust candidates are readily distinguished from debris impacts on the basis of elemental composition and/or impact trajectory.

View Article and Find Full Text PDF

We measured the elemental compositions of material from 23 particles in aerogel and from residue in seven craters in aluminum foil that was collected during passage of the Stardust spacecraft through the coma of comet 81P/Wild 2. These particles are chemically heterogeneous at the largest size scale analyzed ( approximately 180 ng). The mean elemental composition of this Wild 2 material is consistent with the CI meteorite composition, which is thought to represent the bulk composition of the solar system, for the elements Mg, Si, Mn, Fe, and Ni to 35%, and for Ca and Ti to 60%.

View Article and Find Full Text PDF