Relative to conventional wet-chemical synthesis techniques, on-surface synthesis of organic networks in ultrahigh vacuum has few control parameters. The molecular deposition rate and substrate temperature are typically the only synthesis variables to be adjusted dynamically. Here we demonstrate that reducing conditions in the vacuum environment can be created and controlled without dedicated sources─relying only on backfilled hydrogen gas and ion gauge filaments─and can dramatically influence the Ullmann-like on-surface reaction used for synthesizing two-dimensional covalent organic frameworks (2D COFs).
View Article and Find Full Text PDF