As neurons develop, several immature processes (i.e., neurites) grow out of the cell body.
View Article and Find Full Text PDFProtein micropatterning is a powerful tool for studying the effects of extracellular signals on cell development and regeneration. Laser micropatterning of proteins is the most flexible method for patterning many different geometries, protein densities, and concentration gradients. Despite these advantages, laser micropatterning remains prohibitively slow for most applications.
View Article and Find Full Text PDFSynaptic function is affected in many brain diseases and disorders. Technologies for large-scale synapse assays can facilitate identification of drug leads. Here we report a 'synapse microarray' technology that enables ultra-sensitive, high-throughput and quantitative screening of synaptogenesis.
View Article and Find Full Text PDFDuring both development and regeneration of the nervous system, neurons display complex growth dynamics, and several neurites compete to become the neuron's single axon. Numerous mathematical and biophysical models have been proposed to explain this competition, which remain experimentally unverified. Large-scale, precise, and repeatable measurements of neurite dynamics have been difficult to perform, since neurons have varying numbers of neurites, which themselves have complex morphologies.
View Article and Find Full Text PDFThis paper is the second in a series of papers describing the design and development of an osteochondral scaffold using collagen-glycosaminoglycan and calcium phosphate technologies engineered for the regenerative repair of articular cartilage defects. The previous paper described a technology (concurrent mapping) for systematic variation and control of the chemical composition of triple coprecipitated collagen, glycosaminoglycan, and calcium phosphate (CGCaP) nanocomposites without using titrants. This paper describes (1) fabricating porous, three-dimensional scaffolds from the CGCaP suspensions, (2) characterizing the microstructure and mechanical properties of such scaffolds, and (3) modifying the calcium phosphate mineral phase.
View Article and Find Full Text PDFThere is a need to improve current treatments for articular cartilage injuries. This article is the third in a series describing the design and development of an osteochondral scaffold based on collagen-glycosaminoglycan and calcium phosphate technologies for regenerative repair of articular cartilage defects. The previous articles in this series described methods for producing porous, three-dimensional mineralized collagen-GAG (CGCaP) scaffolds whose composition can be reproducibly varied to mimic the composition of subchondral bone, and pore microstructure and mineral phase can be modified.
View Article and Find Full Text PDF