The objective of our study was to develop a genetically encoded biosensor for quantification of Nedd8, a post-translational modifier that regulates cellular signals through conjugation to other proteins. Perturbations in the balance of free (i.e.
View Article and Find Full Text PDFIntrinsic cortical activity forms traveling waves that modulate sensory-evoked responses and perceptual sensitivity. These intrinsic traveling waves (iTWs) may arise from the coordination of synaptic activity through long-range feature-dependent horizontal connectivity within cortical areas. In a spiking network model that incorporates feature-selective patchy connections, we observe iTW motifs that result from shifts in excitatory/inhibitory balance as action potentials traverse these patchy connections.
View Article and Find Full Text PDFHigh-density linear probes, such as Neuropixels, provide an unprecedented opportunity to understand how neural populations within specific laminar compartments contribute to behavior. Marmoset monkeys, unlike macaque monkeys, have a lissencephalic (smooth) cortex that enables recording perpendicular to the cortical surface, thus making them an ideal animal model for studying laminar computations. Here we present a method for acute Neuropixels recordings in the common marmoset ().
View Article and Find Full Text PDFIntrinsic, ongoing fluctuations of cortical activity form traveling waves that modulate the gain of sensory-evoked responses and perceptual sensitivity. Several lines of evidence suggest that intrinsic traveling waves (iTWs) may arise, in part, from the coordination of synaptic activity through the recurrent horizontal connectivity within cortical areas, which include long range patchy connections that link neurons with shared feature preferences. In a spiking network model with anatomical topology that incorporates feature-selective patchy connections, which we call the Balanced Patchy Network (BPN), we observe repeated iTWs, which we refer to as .
View Article and Find Full Text PDFHigh-density linear probes, like Neuropixels, provide an unprecedented opportunity to understand how neural populations within specific laminar compartments contribute to behavior. Marmoset monkeys, unlike macaque monkeys, have a lissencephalic (smooth) cortex that enables recording perpendicular to the cortical surface, thus making them an ideal animal model for studying laminar computations. Here we present a method for acute Neuropixels recordings in the common marmoset ().
View Article and Find Full Text PDFThe double-drift illusion has two unique characteristics: The error between the perceived and physical position of the stimulus grows over time, and saccades to the moving target land much closer to the physical than the perceived location. These results suggest that the perceptual and saccade targeting systems integrate visual information over different time scales. Functional imaging studies in humans have revealed several potential cortical areas of interest, including the prefrontal cortex.
View Article and Find Full Text PDFRecent analyses have found waves of neural activity traveling across entire visual cortical areas in awake animals. These traveling waves modulate the excitability of local networks and perceptual sensitivity. The general computational role of these spatiotemporal patterns in the visual system, however, remains unclear.
View Article and Find Full Text PDFThe cortical column is one of the fundamental computational circuits in the brain. In order to understand the role neurons in different layers of this circuit play in cortical function it is necessary to identify the boundaries that separate the laminar compartments. While histological approaches can reveal ground truth they are not a practical means of identifying cortical layers in vivo.
View Article and Find Full Text PDFPopulations of cortical neurons generate rhythmic fluctuations in their ongoing spontaneous activity. These fluctuations can be seen in the local field potential (LFP), which reflects summed return currents from synaptic activity in the local population near a recording electrode. The LFP is spectrally broad, and many researchers view this breadth as containing many narrowband oscillatory components that may have distinct functional roles.
View Article and Find Full Text PDFStudies of sensory-evoked neuronal responses often focus on mean spike rates, with fluctuations treated as internally-generated noise. However, fluctuations of spontaneous activity, often organized as traveling waves, shape stimulus-evoked responses and perceptual sensitivity. The mechanisms underlying these waves are unknown.
View Article and Find Full Text PDFPerceptual sensitivity varies from moment to moment. One potential source of this variability is spontaneous fluctuations in cortical activity that can travel as waves. Spontaneous travelling waves have been reported during anaesthesia, but it is not known whether they have a role during waking perception.
View Article and Find Full Text PDFVisually evoked activity is necessary for the normal development of the visual system. However, little is known about the capacity for patterned spontaneous activity to drive the maturation of receptive fields before visual experience. Retinal waves provide instructive retinotopic information for the anatomical organization of the visual thalamus.
View Article and Find Full Text PDFThe segregation and maintenance of eye-specific inputs in the dorsal lateral geniculate nucleus (dLGN) during early postnatal development requires the patterned spontaneous activity of retinal waves. In contrast to the development of the mouse, ferret eye-specific segregation is not complete at the start of stage III glutamatergic retinal waves, and the remaining overlap is limited to the C/C1 lamina of the dLGN. To investigate the role of patterned spontaneous activity in this late segregation, we disrupted retinal waves pharmacologically for 5 day windows from postnatal day (P) 10 to P25.
View Article and Find Full Text PDF