Publications by authors named "Zachary T Monahan"

Many proteins involved in the pathogenic mechanisms of amyotrophic lateral sclerosis (ALS) are remarkably similar to proteins that form prions in the yeast . These ALS-associated proteins are not orthologs of yeast prion proteins, but are similar in having long, intrinsically disordered domains that are rich in hydrophilic amino acids. These so-called prion-like domains are particularly aggregation-prone and are hypothesized to participate in the mislocalization and misfolding processes that occur in the motor neurons of ALS patients.

View Article and Find Full Text PDF

FUS (fused in sarcoma) is an abundant, predominantly nuclear protein involved in RNA processing. Under various conditions, FUS functionally associates with RNA and other macromolecules to form distinct, reversible phase-separated liquid structures. Persistence of the phase-separated state and increased cytoplasmic localization are both hypothesized to predispose FUS to irreversible aggregation, which is a pathological hallmark of subtypes of amyotrophic lateral sclerosis and frontotemporal dementia.

View Article and Find Full Text PDF

Subcellular mislocalization and aggregation of the human FUS protein occurs in neurons of patients with subtypes of amyotrophic lateral sclerosis and frontotemporal dementia. FUS is one of several RNA-binding proteins that can functionally self-associate into distinct liquid-phase droplet structures. It is postulated that aberrant interactions within the dense phase-separated state can potentiate FUS's transition into solid prion-like aggregates that cause disease.

View Article and Find Full Text PDF